Browse Source

Cohomological parametrization

master
Lev 2 years ago
parent
commit
2dd7201765
  1. 358
      NoisyCircle.ipynb
  2. 63
      model/decoding.py
  3. 2
      model/persistence.py

358
NoisyCircle.ipynb

File diff suppressed because one or more lines are too long

63
model/decoding.py

@ -1,4 +1,4 @@
# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-
"""
Use cohomology to decode datasets with circular parameters
@ -14,7 +14,7 @@ from tqdm import trange
import ripser
from persistence import persistence
from .persistence import persistence
EPSILON = 0.0000000000001
@ -48,18 +48,19 @@ def shortest_cycle(graph, node2, node1):
while (math.isnan(prev_nodes[node1])):
distances_buffer = distances
for j in range(N):
possible_path_lengths = distances_buffer + graph[:,j]
possible_path_lengths = distances_buffer + graph[:, j]
if (np.min(possible_path_lengths) < distances[j]):
prev_nodes[j] = np.argmin(possible_path_lengths)
distances[j] = np.min(possible_path_lengths)
prev_nodes = prev_nodes.astype(int)
cycle = [node1]
while (cycle[0] != node2):
cycle.insert(0,prev_nodes[cycle[0]])
cycle.insert(0,node1)
cycle.insert(0, prev_nodes[cycle[0]])
cycle.insert(0, node1)
return cycle
def cohomological_parameterization(X ,cocycle_number=1, coeff=2,weighted=False):
def cohomological_parameterization(X, cocycle_number=1, coeff=2, weighted=False):
"""
Compute an angular parametrization on the data set corresponding to a given
1-cycle
@ -93,61 +94,61 @@ def cohomological_parameterization(X ,cocycle_number=1, coeff=2,weighted=False):
cocycle = cocycles[1][idx]
persistence(X, homdim=1, coeff=coeff, show_largest_homology=0,
Nsubsamples=0, save_path=None, cycle=idx)
thresh = dgm1[idx, 1]-EPSILON
thresh = dgm1[idx, 1] - EPSILON
# Compute connectivity
N = X.shape[0]
connectivity = np.zeros([N,N])
connectivity = np.zeros([N, N])
for i in range(N):
for j in range(i):
if D[i, j] <= thresh:
connectivity[i,j] = 1
cocycle_array = np.zeros([N,N])
connectivity[i, j] = 1
cocycle_array = np.zeros([N, N])
# Lift cocycle
for i in range(cocycle.shape[0]):
cocycle_array[cocycle[i,0],cocycle[i,1]] = (
((cocycle[i,2] + coeff/2) % coeff) - coeff/2
)
cocycle_array[cocycle[i, 0], cocycle[i, 1]] = (
((cocycle[i, 2] + coeff / 2) % coeff) - coeff / 2
)
# Weights
if (weighted):
def real_cocycle(x):
real_cocycle =(
connectivity * (cocycle_array + np.subtract.outer(x, x))
)
real_cocycle = (
connectivity * (cocycle_array + np.subtract.outer(x, x))
)
return np.ravel(real_cocycle)
# Compute graph
x0 = np.zeros(N)
res = least_squares(real_cocycle, x0)
real_cocyle_array = res.fun
real_cocyle_array = real_cocyle_array.reshape(N,N)
real_cocyle_array = real_cocyle_array.reshape(N, N)
real_cocyle_array = real_cocyle_array - np.transpose(real_cocyle_array)
graph = np.array(real_cocyle_array>0).astype(float)
graph[graph==0] = np.inf
graph = (D + EPSILON) * graph # Add epsilon to avoid NaNs
graph = np.array(real_cocyle_array > 0).astype(float)
graph[graph == 0] = np.inf
graph = (D + EPSILON) * graph # Add epsilon to avoid NaNs
# Compute weights
cycle_counts = np.zeros([N,N])
cycle_counts = np.zeros([N, N])
iterator = trange(0, N, position=0, leave=True)
iterator.set_description("Computing weights for decoding")
for i in iterator:
for j in range(N):
if (graph[i,j] != np.inf):
if (graph[i, j] != np.inf):
cycle = shortest_cycle(graph, j, i)
for k in range(len(cycle)-1):
cycle_counts[cycle[k], cycle[k+1]] += 1
for k in range(len(cycle) - 1):
cycle_counts[cycle[k], cycle[k + 1]] += 1
weights = cycle_counts / (D + EPSILON)**2
weights = cycle_counts / (D + EPSILON) ** 2
weights = np.sqrt(weights)
else:
weights = np.outer(np.ones(N),np.ones(N))
weights = np.outer(np.ones(N), np.ones(N))
def real_cocycle(x):
real_cocycle =(
weights * connectivity * (cocycle_array + np.subtract.outer(x, x))
)
real_cocycle = (
weights * connectivity * (cocycle_array + np.subtract.outer(x, x))
)
return np.ravel(real_cocycle)
# Smooth cocycle
@ -180,9 +181,9 @@ def remove_feature(X, decoding, shift=0, cut_amplitude=1.0):
Amplitude of the cut
"""
cuts = np.zeros(X.shape)
decoding = decoding.to_numpy()[:,0]
decoding = decoding.to_numpy()[:, 0]
for i in range(X.shape[1]):
effective_amplitude = cut_amplitude * (np.max(X[i]) - np.min(X[i]))
cuts[:,i] = effective_amplitude * ((decoding - shift) % 1)
cuts[:, i] = effective_amplitude * ((decoding - shift) % 1)
reduced_data = X + cuts
return reduced_data

2
model/persistence.py

@ -16,7 +16,7 @@ import ripser
from persim import plot_diagrams
import gudhi
from decorators import multi_input
from .decorators import multi_input
def hausdorff(data1, data2, homdim, coeff):

Loading…
Cancel
Save