You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
189 lines
6.2 KiB
189 lines
6.2 KiB
# -*- coding: utf-8 -*- |
|
""" |
|
Use cohomology to decode datasets with circular parameters |
|
|
|
Persistent homology from arxiv:1908.02518 |
|
Homological decoding from DOI:10.1007/s00454-011-9344-x and arxiv:1711.07205 |
|
""" |
|
import math |
|
import numpy as np |
|
from scipy.optimize import least_squares |
|
import pandas as pd |
|
|
|
from tqdm import trange |
|
|
|
import ripser |
|
|
|
from .persistence import persistence |
|
|
|
EPSILON = 0.0000000000001 |
|
|
|
|
|
def shortest_cycle(graph, node2, node1): |
|
""" |
|
Returns the shortest cycle going through an edge |
|
|
|
Used for computing weights in decode |
|
|
|
Parameters |
|
---------- |
|
graph: ndarray (n_nodes, n_nodes) |
|
A matrix containing the weights of the edges in the graph |
|
node1: int |
|
The index of the first node of the edge |
|
node2: int |
|
The index of the second node of the edge |
|
|
|
Returns |
|
------- |
|
cycle: list of ints |
|
A list of indices representing the nodes of the cycle in order |
|
""" |
|
N = graph.shape[0] |
|
distances = np.inf * np.ones(N) |
|
distances[node2] = 0 |
|
prev_nodes = np.zeros(N) |
|
prev_nodes[:] = np.nan |
|
prev_nodes[node2] = node1 |
|
while (math.isnan(prev_nodes[node1])): |
|
distances_buffer = distances |
|
for j in range(N): |
|
possible_path_lengths = distances_buffer + graph[:, j] |
|
if (np.min(possible_path_lengths) < distances[j]): |
|
prev_nodes[j] = np.argmin(possible_path_lengths) |
|
distances[j] = np.min(possible_path_lengths) |
|
prev_nodes = prev_nodes.astype(int) |
|
cycle = [node1] |
|
while (cycle[0] != node2): |
|
cycle.insert(0, prev_nodes[cycle[0]]) |
|
cycle.insert(0, node1) |
|
return cycle |
|
|
|
|
|
def cohomological_parameterization(X, cocycle_number=1, coeff=2, weighted=False): |
|
""" |
|
Compute an angular parametrization on the data set corresponding to a given |
|
1-cycle |
|
|
|
Parameters |
|
---------- |
|
X: ndarray(n_datapoints, n_features): |
|
Array containing the data |
|
cocycle_number: int, optional, default 1 |
|
An integer specifying the 1-cycle used |
|
The n-th most stable 1-cycle is used, where n = cocycle_number |
|
coeff: int prime, optional, default 1 |
|
The coefficient basis in which we compute the cohomology |
|
weighted: bool, optional, default False |
|
When true use a weighted graph for smoother parameterization |
|
as proposed in arxiv:1711.07205 |
|
|
|
Returns |
|
------- |
|
decoding: ndarray(n_datapoints) |
|
The parameterization of the dataset consisting of a number between |
|
0 and 1 for each datapoint, to be interpreted modulo 1 |
|
""" |
|
# Get the cocycle |
|
result = ripser.ripser(X, maxdim=1, coeff=coeff, do_cocycles=True) |
|
diagrams = result['dgms'] |
|
cocycles = result['cocycles'] |
|
D = result['dperm2all'] |
|
dgm1 = diagrams[1] |
|
idx = np.argsort(dgm1[:, 1] - dgm1[:, 0])[-cocycle_number] |
|
cocycle = cocycles[1][idx] |
|
persistence(X, homdim=1, coeff=coeff, show_largest_homology=0, |
|
Nsubsamples=0, save_path=None, cycle=idx) |
|
thresh = dgm1[idx, 1] - EPSILON |
|
|
|
# Compute connectivity |
|
N = X.shape[0] |
|
connectivity = np.zeros([N, N]) |
|
for i in range(N): |
|
for j in range(i): |
|
if D[i, j] <= thresh: |
|
connectivity[i, j] = 1 |
|
cocycle_array = np.zeros([N, N]) |
|
|
|
# Lift cocycle |
|
for i in range(cocycle.shape[0]): |
|
cocycle_array[cocycle[i, 0], cocycle[i, 1]] = ( |
|
((cocycle[i, 2] + coeff / 2) % coeff) - coeff / 2 |
|
) |
|
|
|
# Weights |
|
if (weighted): |
|
def real_cocycle(x): |
|
real_cocycle = ( |
|
connectivity * (cocycle_array + np.subtract.outer(x, x)) |
|
) |
|
return np.ravel(real_cocycle) |
|
|
|
# Compute graph |
|
x0 = np.zeros(N) |
|
res = least_squares(real_cocycle, x0) |
|
real_cocyle_array = res.fun |
|
real_cocyle_array = real_cocyle_array.reshape(N, N) |
|
real_cocyle_array = real_cocyle_array - np.transpose(real_cocyle_array) |
|
graph = np.array(real_cocyle_array > 0).astype(float) |
|
graph[graph == 0] = np.inf |
|
graph = (D + EPSILON) * graph # Add epsilon to avoid NaNs |
|
|
|
# Compute weights |
|
cycle_counts = np.zeros([N, N]) |
|
iterator = trange(0, N, position=0, leave=True) |
|
iterator.set_description("Computing weights for decoding") |
|
for i in iterator: |
|
for j in range(N): |
|
if (graph[i, j] != np.inf): |
|
cycle = shortest_cycle(graph, j, i) |
|
for k in range(len(cycle) - 1): |
|
cycle_counts[cycle[k], cycle[k + 1]] += 1 |
|
|
|
weights = cycle_counts / (D + EPSILON) ** 2 |
|
weights = np.sqrt(weights) |
|
else: |
|
weights = np.outer(np.ones(N), np.ones(N)) |
|
|
|
def real_cocycle(x): |
|
real_cocycle = ( |
|
weights * connectivity * (cocycle_array + np.subtract.outer(x, x)) |
|
) |
|
return np.ravel(real_cocycle) |
|
|
|
# Smooth cocycle |
|
print("Decoding...", end=" ") |
|
x0 = np.zeros(N) |
|
res = least_squares(real_cocycle, x0) |
|
decoding = res.x |
|
decoding = np.mod(decoding, 1) |
|
print("done") |
|
|
|
decoding = pd.DataFrame(decoding, columns=["decoding"]) |
|
decoding = decoding.set_index(X.index) |
|
return decoding |
|
|
|
|
|
def remove_feature(X, decoding, shift=0, cut_amplitude=1.0): |
|
""" |
|
Removes a decoded feature from a dataset by making a cut at a fixed value |
|
of the decoding |
|
|
|
Parameters |
|
---------- |
|
X: dataframe(n_datapoints, n_features): |
|
Array containing the data |
|
decoding : dataframe(n_datapoints) |
|
The decoded feature, assumed to be angular with periodicity 1 |
|
shift : float between 0 and 1, optional, default 0 |
|
The location of the cut |
|
cut_amplitude : float, optional, default 1 |
|
Amplitude of the cut |
|
""" |
|
cuts = np.zeros(X.shape) |
|
decoding = decoding.to_numpy()[:, 0] |
|
for i in range(X.shape[1]): |
|
effective_amplitude = cut_amplitude * (np.max(X[i]) - np.min(X[i])) |
|
cuts[:, i] = effective_amplitude * ((decoding - shift) % 1) |
|
reduced_data = X + cuts |
|
return reduced_data
|
|
|