|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
|
|
Use cohomology to decode datasets with circular parameters
|
|
|
|
|
|
|
|
Persistent homology from arxiv:1908.02518
|
|
|
|
Homological decoding from DOI:10.1007/s00454-011-9344-x and arxiv:1711.07205
|
|
|
|
"""
|
|
|
|
import math
|
|
|
|
import numpy as np
|
|
|
|
from scipy.optimize import least_squares
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
from tqdm import trange
|
|
|
|
|
|
|
|
import ripser
|
|
|
|
|
|
|
|
from .persistence import persistence
|
|
|
|
|
|
|
|
EPSILON = 0.0000000000001
|
|
|
|
|
|
|
|
|
|
|
|
def shortest_cycle(graph, node2, node1):
|
|
|
|
"""
|
|
|
|
Returns the shortest cycle going through an edge
|
|
|
|
|
|
|
|
Used for computing weights in decode
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
graph: ndarray (n_nodes, n_nodes)
|
|
|
|
A matrix containing the weights of the edges in the graph
|
|
|
|
node1: int
|
|
|
|
The index of the first node of the edge
|
|
|
|
node2: int
|
|
|
|
The index of the second node of the edge
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
cycle: list of ints
|
|
|
|
A list of indices representing the nodes of the cycle in order
|
|
|
|
"""
|
|
|
|
N = graph.shape[0]
|
|
|
|
distances = np.inf * np.ones(N)
|
|
|
|
distances[node2] = 0
|
|
|
|
prev_nodes = np.zeros(N)
|
|
|
|
prev_nodes[:] = np.nan
|
|
|
|
prev_nodes[node2] = node1
|
|
|
|
while (math.isnan(prev_nodes[node1])):
|
|
|
|
distances_buffer = distances
|
|
|
|
for j in range(N):
|
|
|
|
possible_path_lengths = distances_buffer + graph[:, j]
|
|
|
|
if (np.min(possible_path_lengths) < distances[j]):
|
|
|
|
prev_nodes[j] = np.argmin(possible_path_lengths)
|
|
|
|
distances[j] = np.min(possible_path_lengths)
|
|
|
|
prev_nodes = prev_nodes.astype(int)
|
|
|
|
cycle = [node1]
|
|
|
|
while (cycle[0] != node2):
|
|
|
|
cycle.insert(0, prev_nodes[cycle[0]])
|
|
|
|
cycle.insert(0, node1)
|
|
|
|
return cycle
|
|
|
|
|
|
|
|
|
|
|
|
def cohomological_parameterization(X, cocycle_number=1, coeff=2, weighted=False):
|
|
|
|
"""
|
|
|
|
Compute an angular parametrization on the data set corresponding to a given
|
|
|
|
1-cycle
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
X: ndarray(n_datapoints, n_features):
|
|
|
|
Array containing the data
|
|
|
|
cocycle_number: int, optional, default 1
|
|
|
|
An integer specifying the 1-cycle used
|
|
|
|
The n-th most stable 1-cycle is used, where n = cocycle_number
|
|
|
|
coeff: int prime, optional, default 1
|
|
|
|
The coefficient basis in which we compute the cohomology
|
|
|
|
weighted: bool, optional, default False
|
|
|
|
When true use a weighted graph for smoother parameterization
|
|
|
|
as proposed in arxiv:1711.07205
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
decoding: ndarray(n_datapoints)
|
|
|
|
The parameterization of the dataset consisting of a number between
|
|
|
|
0 and 1 for each datapoint, to be interpreted modulo 1
|
|
|
|
"""
|
|
|
|
# Get the cocycle
|
|
|
|
result = ripser.ripser(X, maxdim=1, coeff=coeff, do_cocycles=True)
|
|
|
|
diagrams = result['dgms']
|
|
|
|
cocycles = result['cocycles']
|
|
|
|
D = result['dperm2all']
|
|
|
|
dgm1 = diagrams[1]
|
|
|
|
idx = np.argsort(dgm1[:, 1] - dgm1[:, 0])[-cocycle_number]
|
|
|
|
cocycle = cocycles[1][idx]
|
|
|
|
persistence(X, homdim=1, coeff=coeff, show_largest_homology=0,
|
|
|
|
Nsubsamples=0, save_path=None, cycle=idx)
|
|
|
|
thresh = dgm1[idx, 1] - EPSILON
|
|
|
|
|
|
|
|
# Compute connectivity
|
|
|
|
N = X.shape[0]
|
|
|
|
connectivity = np.zeros([N, N])
|
|
|
|
for i in range(N):
|
|
|
|
for j in range(i):
|
|
|
|
if D[i, j] <= thresh:
|
|
|
|
connectivity[i, j] = 1
|
|
|
|
cocycle_array = np.zeros([N, N])
|
|
|
|
|
|
|
|
# Lift cocycle
|
|
|
|
for i in range(cocycle.shape[0]):
|
|
|
|
cocycle_array[cocycle[i, 0], cocycle[i, 1]] = (
|
|
|
|
((cocycle[i, 2] + coeff / 2) % coeff) - coeff / 2
|
|
|
|
)
|
|
|
|
|
|
|
|
# Weights
|
|
|
|
if (weighted):
|
|
|
|
def real_cocycle(x):
|
|
|
|
real_cocycle = (
|
|
|
|
connectivity * (cocycle_array + np.subtract.outer(x, x))
|
|
|
|
)
|
|
|
|
return np.ravel(real_cocycle)
|
|
|
|
|
|
|
|
# Compute graph
|
|
|
|
x0 = np.zeros(N)
|
|
|
|
res = least_squares(real_cocycle, x0)
|
|
|
|
real_cocyle_array = res.fun
|
|
|
|
real_cocyle_array = real_cocyle_array.reshape(N, N)
|
|
|
|
real_cocyle_array = real_cocyle_array - np.transpose(real_cocyle_array)
|
|
|
|
graph = np.array(real_cocyle_array > 0).astype(float)
|
|
|
|
graph[graph == 0] = np.inf
|
|
|
|
graph = (D + EPSILON) * graph # Add epsilon to avoid NaNs
|
|
|
|
|
|
|
|
# Compute weights
|
|
|
|
cycle_counts = np.zeros([N, N])
|
|
|
|
iterator = trange(0, N, position=0, leave=True)
|
|
|
|
iterator.set_description("Computing weights for decoding")
|
|
|
|
for i in iterator:
|
|
|
|
for j in range(N):
|
|
|
|
if (graph[i, j] != np.inf):
|
|
|
|
cycle = shortest_cycle(graph, j, i)
|
|
|
|
for k in range(len(cycle) - 1):
|
|
|
|
cycle_counts[cycle[k], cycle[k + 1]] += 1
|
|
|
|
|
|
|
|
weights = cycle_counts / (D + EPSILON) ** 2
|
|
|
|
weights = np.sqrt(weights)
|
|
|
|
else:
|
|
|
|
weights = np.outer(np.ones(N), np.ones(N))
|
|
|
|
|
|
|
|
def real_cocycle(x):
|
|
|
|
real_cocycle = (
|
|
|
|
weights * connectivity * (cocycle_array + np.subtract.outer(x, x))
|
|
|
|
)
|
|
|
|
return np.ravel(real_cocycle)
|
|
|
|
|
|
|
|
# Smooth cocycle
|
|
|
|
print("Decoding...", end=" ")
|
|
|
|
x0 = np.zeros(N)
|
|
|
|
res = least_squares(real_cocycle, x0)
|
|
|
|
decoding = res.x
|
|
|
|
decoding = np.mod(decoding, 1)
|
|
|
|
print("done")
|
|
|
|
|
|
|
|
decoding = pd.DataFrame(decoding, columns=["decoding"])
|
|
|
|
decoding = decoding.set_index(X.index)
|
|
|
|
return decoding
|
|
|
|
|
|
|
|
|
|
|
|
def remove_feature(X, decoding, shift=0, cut_amplitude=1.0):
|
|
|
|
"""
|
|
|
|
Removes a decoded feature from a dataset by making a cut at a fixed value
|
|
|
|
of the decoding
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
X: dataframe(n_datapoints, n_features):
|
|
|
|
Array containing the data
|
|
|
|
decoding : dataframe(n_datapoints)
|
|
|
|
The decoded feature, assumed to be angular with periodicity 1
|
|
|
|
shift : float between 0 and 1, optional, default 0
|
|
|
|
The location of the cut
|
|
|
|
cut_amplitude : float, optional, default 1
|
|
|
|
Amplitude of the cut
|
|
|
|
"""
|
|
|
|
cuts = np.zeros(X.shape)
|
|
|
|
decoding = decoding.to_numpy()[:, 0]
|
|
|
|
for i in range(X.shape[1]):
|
|
|
|
effective_amplitude = cut_amplitude * (np.max(X[i]) - np.min(X[i]))
|
|
|
|
cuts[:, i] = effective_amplitude * ((decoding - shift) % 1)
|
|
|
|
reduced_data = X + cuts
|
|
|
|
return reduced_data
|