Topology in neuroscience
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2599 lines
1.6 MiB

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Experiment: Flashed gratings"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Initialization"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Imports"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import scipy\n",
"import scipy.stats as sts\n",
"import pickle as pkl\n",
"import ipywidgets as widgets\n",
"from mpl_toolkits import mplot3d\n",
"from mpl_toolkits.mplot3d import Axes3D\n",
"from scipy import sparse\n",
"import sys\n",
"from matplotlib import cm\n",
"sys.path.insert(0, '../model/')\n",
"\n",
"# color maps\n",
"cmap_hot = cm.get_cmap('hot')\n",
"cmap_viridis = cm.get_cmap('viridis')\n",
"cmap_jet = cm.get_cmap('jet')"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"\n",
"data_folder = \"../data/\"\n",
"stim_file = \"Stiminfo_PVCre_2021_0012_s06_e14.csv\"\n",
"spike_times_file = \"Spiketimes_PVCre_2021_0012_s06_e14.npy\"\n",
"\n",
"key_symbol = {'pair':'$(\\\\theta,\\phi)$', 'orientation':'$\\\\theta$', 'phase':'$\\phi$'}"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"dict_keys(['data_folder', 'stim_file', 'spike_times_file', 'key_symbol', 'stim', 'num_trial', 'stim_val', 'trial_stim_id', 'key_list', 'stim_id_trial', 'num_stim', 'key', 'pair_id', 'trial_pair_id', 'pair_val', 'pair_trial_id', 'spike_times', 'num_unit', 'num_spike', 'spike_count_rate', 'avg_firing_rate', 'firing_rate', 'stim_num_trial', 'stim_hist', 'optimal_avg_firing_rate', 'latest_spike_time', 'dt', 'exp_time', 'B_stim', 'trials', 't_on', 't_off', 'B_spike', 'trial_range', 'units', 'orientation', 'phase', 'trial_spike_times', 'delta_t_on', 'delta_t_off', 'subseq_trials', 'subseq_spike_times', 'subseq_spike_times_locked', 'time_range', 'unit_id_2', 'p1', 'p2', 'delta_t', 'time_range_smoothing', 'period_1_dist', 'period_2_dist', 'period_3_dist', 'num_units', 'max_p_1', 'max_p_2', 'max_p_3', 'delta_2', 'delta_3', 't_p1', 't_p2', 'subseq_spike_times_locked_2', 'B_spike_fixed', 'B_stim_original', 'B_spike_smooth', 'B_stim_total', 'R', 'R_pair_smoothed', 'Rp', 'firing_rates_noise_red', 'firing_rates_flat', 'firing_rates_in_trials', 'avg_firing_rates', 'avg_fr_blur', 'avg_firing_rates_pca', 'param_corr', 'avg_firing_rates_pca_', 'embed'])\n"
]
}
],
"source": [
"file = open(\"dump.pkl\", 'rb')\n",
"pair_id = None\n",
"data = pkl.load(file)\n",
"print(data.keys())\n",
"for key, value in data.items():\n",
" globals()[key] = value\n",
"file.close()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import pickle\n",
"with open('dump.pkl', 'wb') as f:\n",
" pickle.dump({k: globals()[k] for k in [\n",
" 'data_folder', 'stim_file', 'spike_times_file', 'key_symbol', \n",
" 'stim', 'num_trial', 'stim_val', 'trial_stim_id', 'key_list', 'stim_id_trial', 'num_stim', 'key', 'pair_id', 'trial_pair_id', 'pair_val', 'pair_trial_id',\n",
" 'spike_times', 'num_unit', 'num_spike', 'spike_count_rate', 'avg_firing_rate', 'firing_rate', 'stim_num_trial', 'stim_hist', 'optimal_avg_firing_rate',\n",
" 'latest_spike_time', 'dt', 'exp_time', 'B_stim', 'trials', 't_on', 't_off', 'B_spike', 'trial_range', 'units', 'orientation', 'phase', 'trial_spike_times',\n",
" 'delta_t_on', 'delta_t_off', 'subseq_trials', 'subseq_spike_times', 'subseq_spike_times_locked', 'time_range', 'unit_id_2', 'p1', 'p2', 'delta_t', 'time_range_smoothing',\n",
" 'period_1_dist', 'period_2_dist', 'period_3_dist', 'num_units', 'max_p_1', 'max_p_2', 'max_p_3', 'delta_2', 'delta_3', 't_p1', 't_p2', 'subseq_spike_times_locked_2',\n",
" 'B_spike_fixed', 'B_stim_original', 'B_spike_smooth', 'B_stim_total', 'R', 'R_pair_smoothed', 'Rp', 'firing_rates_noise_red', 'firing_rates_flat', 'firing_rates_in_trials', 'avg_firing_rates',\n",
" 'avg_fr_blur', 'avg_firing_rates', 'avg_firing_rates_pca', 'param_corr', 'avg_firing_rates_pca_', 'embed'\n",
" ]}, f)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Load the stimulus data\n",
"**Stimulus data layout:**\n",
"```\n",
"stim_val = {'pair': [(or1, ph1), (or2, ph2), ...], 'orientation': [...], 'phase': [...]}\n",
"stim_id_trial = {'pair': [id1, id2, ...], 'phase': [..], ...} # corresponding trials\n",
"pair_trial_id[orientation_id][phase_id] = [Trial ids]\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# Stimulus DataFrame\n",
"stim = pd.read_csv(data_folder + stim_file)\n",
"num_trial = len(stim)\n",
"stim_val = {}\n",
"trial_stim_id = {}\n",
"# 50 trials per orientation-phase pair\n",
"stim_val['pair'], trial_stim_id['pair'] = np.unique(stim[['grat_orientation', 'grat_phase']], return_inverse=True, axis=0) \n",
"# 1000 trials per orientation\n",
"stim_val['orientation'], trial_stim_id['orientation'] = np.unique(stim['grat_orientation'], return_inverse=True) \n",
"# 1000 trials per phase\n",
"stim_val['phase'], trial_stim_id['phase'] = np.unique(stim['grat_phase'], return_inverse=True) \n",
"key_list = ['pair', 'orientation', 'phase']\n",
"stim_id_trial = {}\n",
"num_stim = {}\n",
"for key in key_list:\n",
" stim_id_trial[key] = [np.where(trial_stim_id[key] == i)[0] for i in range(len(stim_val[key]))]\n",
" num_stim[key] = len(stim_val[key])\n",
"\n",
"def pair_id(i):\n",
" return (int(i//num_stim['orientation']), i%num_stim['orientation'])\n",
"\n",
"trial_pair_id = np.array([pair_id(i) for i in trial_stim_id['pair']], dtype=object)\n",
"pair_val = stim_val['pair'].reshape(num_stim['orientation'], num_stim['phase'],2)\n",
"\n",
"# for each (orientation_id = i, phase_id = j) find the trial indices\n",
"pair_trial_id = np.ndarray((num_stim['orientation'], num_stim['phase']), dtype=object)\n",
"for i in range(num_stim['pair']):\n",
" pair_trial_id[pair_id(i)] = stim_id_trial['pair'][i]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Unnamed: 0</th>\n",
" <th>grat_orientation</th>\n",
" <th>grat_phase</th>\n",
" <th>stimvals</th>\n",
" <th>stim_ontime</th>\n",
" <th>stim_offtime</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>45.0</td>\n",
" <td>36.0</td>\n",
" <td>102</td>\n",
" <td>2.5005</td>\n",
" <td>2.5839</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>18.0</td>\n",
" <td>1</td>\n",
" <td>2.6195</td>\n",
" <td>2.7028</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>162.0</td>\n",
" <td>288.0</td>\n",
" <td>376</td>\n",
" <td>2.7030</td>\n",
" <td>2.7863</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>0.0</td>\n",
" <td>54.0</td>\n",
" <td>3</td>\n",
" <td>2.7865</td>\n",
" <td>2.8699</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>108.0</td>\n",
" <td>36.0</td>\n",
" <td>242</td>\n",
" <td>2.8700</td>\n",
" <td>2.9534</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Unnamed: 0 grat_orientation grat_phase stimvals stim_ontime \\\n",
"0 0 45.0 36.0 102 2.5005 \n",
"1 1 0.0 18.0 1 2.6195 \n",
"2 2 162.0 288.0 376 2.7030 \n",
"3 3 0.0 54.0 3 2.7865 \n",
"4 4 108.0 36.0 242 2.8700 \n",
"\n",
" stim_offtime \n",
"0 2.5839 \n",
"1 2.7028 \n",
"2 2.7863 \n",
"3 2.8699 \n",
"4 2.9534 "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"stim.head()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"pair, orientation, phase\n",
"(400, 2)\n",
"(20,) (20,)\n"
]
}
],
"source": [
"print(', '.join(stim_val.keys()))\n",
"print(stim_val['pair'].shape)\n",
"print(stim_val['orientation'].shape, stim_val['phase'].shape)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ 82 482 1021 1421 1821 2183 2645 3045 3445 3643 4357 4757\n",
" 5014 5493 5893 6293 6693 6965 7365 7652 8052 8513 9116 9203\n",
" 9603 10003 10628 10849 11512 11912 12312 12535 12947 13347 13666 14248\n",
" 14682 14857 15257 15657 16393 16793 17193 17262 17906 18146 18546 19050\n",
" 19450 19904]\n"
]
}
],
"source": [
"print(stim_id_trial['pair'][0])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 82, 482, 1021, 1421, 1821, 2183, 2645, 3045, 3445,\n",
" 3643, 4357, 4757, 5014, 5493, 5893, 6293, 6693, 6965,\n",
" 7365, 7652, 8052, 8513, 9116, 9203, 9603, 10003, 10628,\n",
" 10849, 11512, 11912, 12312, 12535, 12947, 13347, 13666, 14248,\n",
" 14682, 14857, 15257, 15657, 16393, 16793, 17193, 17262, 17906,\n",
" 18146, 18546, 19050, 19450, 19904])"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pair_trial_id[0][0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Stimulus data layout:**\n",
"```\n",
"stim_val = {'pair': [(or1, ph1), (or2, ph2), ...], 'orientation': [...], 'phase': [...]}\n",
"stim_id_trial = {'pair': [id1, id2, ...], 'phase': [..], ...} # corresponding trials\n",
"pair_trial_id[orientation_id][phase_id] = [Trial ids]\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Load the spike data and correlations\n",
"```\n",
"Loaded: spike_count_rate, avg_firing_rate, sem_firing_rate, firing_rate, stim_num_trial, C_r_fphi_theta, theta_hist, phase_hist, pair_hist\n",
"Loaded: corr_stim_unit, optimal_avg_firing_rate, stim_hist, stim_hist_caution\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(40,)"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"spike_times_file = \"Spiketimes_PVCre_2021_0012_s06_e14.npy\"\n",
"spike_times = np.load(data_folder+spike_times_file, allow_pickle=True)\n",
"active = [len(spike_times[i]) > 0 for i in range(len(spike_times))]\n",
"spike_times = spike_times[np.where(active)]\n",
"num_unit = len(spike_times)\n",
"spike_times.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Sort spikes by firing rate**"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"\n",
"num_spike = list(map(len, spike_times))\n",
"spike_times = spike_times[np.argsort(num_spike)[::-1]]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Load a lot of variables out of a `.pkl` file**"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loaded: spike_count_rate, avg_firing_rate, sem_firing_rate, firing_rate, stim_num_trial, C_r_fphi_theta, theta_hist, phase_hist, pair_hist\n",
"Loaded: corr_stim_unit, optimal_avg_firing_rate, stim_hist, stim_hist_caution\n"
]
}
],
"source": [
"# yeah...\n",
"files = ['spike_data.pkl', 'corr_data.pkl']\n",
"for file_name in files:\n",
" file = open(file_name, 'rb')\n",
" data = pkl.load(file)\n",
" print('Loaded:', ', '.join(data.keys()))\n",
" for key, value in data.items():\n",
" globals()[key] = value\n",
"\n",
" file.close()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Spike and stimulus preprocessing\n",
"\n",
"```\n",
"B_stim = {'pair': [mat_stim_1, mat_stim_2, ..], 'orientation': .., ...}\n",
"```\n",
"\n",
"`mat_stim_i` is a matrix of shape `(1, M)` such that `mat[0][t] = 1` if there was stimuli at time $t$ and $0$ if not\n",
"\n",
"```\n",
"B_spike = [unit_1_spikes, unit_2_spikes, ..]\n",
"unit_1_spikes[t] = 1 if there was a spike, 0 if not\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Read the data"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# reverse correlation time offset range \n",
"max_delay = 300 # dt\n",
"tau_id_range = np.arange(max_delay)\n",
"\n",
"# experiment duration\n",
"latest_spike_time = max([np.max(s) for s in spike_times if len(s)])\n",
"latest_stim_offtime = list(stim['stim_offtime'])[-1]\n",
"experiment_dur = max([latest_spike_time, latest_stim_offtime])\n",
"\n",
"dt = 0.001 # 1 ms\n",
"exp_time = np.arange(0, experiment_dur, dt)\n",
"M = len(exp_time)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"B_stim = {}\n",
"for key in key_list:\n",
" B_stim[key] = []\n",
" for stim_id, trials in enumerate(stim_id_trial[key]):\n",
" B_stim[key].append([])\n",
" s = []\n",
" for trial_id in trials:\n",
" t_on, t_off = stim['stim_ontime'][trial_id], stim['stim_offtime'][trial_id]\n",
" s += list(np.arange(int(t_on//dt), int(t_off//dt)))\n",
"\n",
" B_stim[key][stim_id] = sparse.coo_matrix((np.ones(len(s)), (np.zeros(len(s), dtype=int), s)), shape=(1, M))\n",
"s = spike_times//dt\n",
"B_spike = []\n",
"for unit_id in range(num_unit):\n",
" B_spike.append(sparse.coo_matrix((np.ones(len(s[unit_id])), (np.zeros(len(s[unit_id]), dtype=int), np.int0(s[unit_id]))), shape=(1, M)))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"sorted_spike_num = np.sort(num_spike)[::-1]\n",
"cutoff_num_spike = 1000\n",
"num_unit = np.sum(sorted_spike_num > cutoff_num_spike)\n",
"for key in key_list:\n",
" stim_hist[key] = stim_hist[key][:num_unit]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Some plots"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This graph shows for unit 0 at a particular moment:\n",
"- One stimulus duration (blue)\n",
"- The second stimulus (red)\n",
"\n",
"And spike events"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEWCAYAAACAOivfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZJUlEQVR4nO3df5xddX3n8de7IcAqIsGMFhMgiNSCIqAjSmUVVw1BV2K3+GiwrcHCxnWluuq2i9oFhXUfVrqrraKQah7gtgKr1W3aRwBpQakoyKD8MCga4w8SsYyEH/JDIPDZP+6JvRlmMjczd3KHnNfz8biPOed7vufczzd3ct9zftx7UlVIktrp1wZdgCRpcAwBSWoxQ0CSWswQkKQWMwQkqcUMAUlqMUNATxhJLkmyvJk+KclXZ/j5fjvJbUnuS3LETD5XD7W8N8mnBlmDdk6GgHaoJEcn+VqSe5JsSnJ1khf1sm5VHVdVF8x0jV3+HDi1qvaoqm/twOd9nKr6n1V1CkCSRUkqyS7bWifJO5P8LMm9SVYl2W3HVKsnEkNAO0ySPYF/AD4G7A0sAD4APDTIurZhf2DtVFZMMqfPtWzv8x8LnAa8ks44nkXn31raiiGgHek3AKrqwqp6tKoerKovVdVN8KtDPFcn+Xizp/DdJK/csnKSLyc5ZbwNJzk7yVeTPLV5fDrJ7Uk2JvkfW96Ukzw7yVea7f88ycXjbGu3JPcBc4Abk/ygaT+4qeHuJGuTHN+1zvlJPplkTZL7gVeMs90fJXlV1/z7k/x1M73lr/vlSX7S1Pa+8foCVzU/724OVR01zj/JcuDTVbW2qu4CzgJOGu/fTu1mCGhH+h7waJILkhyXZN44fV4M/ACYD5wBfCHJ3hNtMMmvJfkr4PnA4qq6Bzgf2Aw8GzgCWAxsCY+zgC8B84CFdPZKtlJVD1XVHs3sYVV1YJK5wN836z4d+CPgb5I8p2vVNwIfBJ4CTPV8xdHAc+j8BX96koPH6fOy5udezaGqr4/T57nAjV3zNwLPSPK0KdalnZQhoB2mqu6l8yZXwF8Bo0lWJ3lGV7c7gI9W1SNVdTFwK/DaCTY5F7iQzqGl11XVA822XgP8l6q6v6ruAD4CLGvWeYTO4ZFnVtUvq6rXN+uXAHsAH6qqh6vqCjqHtk7s6vN3VXV1VT1WVb/scbtjfaDZQ7qRzhv3YVPczh7APV3zW6afMsXtaSdlCGiHqqrvVNVJVbUQeB7wTOCjXV021tbfavjjps94ng0spfPG+XDTtj+dcLi9OWxzN3Aenb/eAf4ECPCN5pDOH/ZY+jOB26rqsTG1Leiav63HbW3Lz7qmH6DzZj4V9wF7ds1vmf7FFLennZQhoIGpqu/SOXTzvK7mBUnSNb8f8NMJNvEd4M3AJV2HZW6jc6J5flXt1Tz2rKrnNs/5s6r6j1X1TOAtwCeSPLuHcn8K7Juk+//MfsDG7iFNso37gSd1zf96D887nl6++nctW+9FHAb8S1XdOcXn1E7KENAOk+Q3k7w7ycJmfl86h1Ou6er2dODtSeYmeQNwMLBmom1W1YXAe4F/THJgVd1O57j9/0qyZ3PO4MAkL2+e8w1bnh+4i84b6mPjbnxr19L5y/xPmtqOAV4HXNTr+IEbgGXN+sPACduxbrdROjU/axt9PgOcnOSQJHsBf0oncKWtGALakX5B58Tvtc0VNNcA3wbe3dXnWuAg4Od0TrKeMNlfr81nB84ErkiyCHgTsCtwC503+s8D+zTdX9Q8/33AauAdVbV+ssKbw02vA45ravsE8KZmb6ZX/x04sKnpA8Bnt2Pd7loeoPNvc3VzyOsl4/S5FPgwcCXwEzqHrs6YyvNp5xZvKqPZIslJwClVdfSga5Hawj0BSWoxQ0CSWszDQZLUYu4JSFKLbfNbCAdl/vz5tWjRokGXsZW7H4FH3GnaoeqB+3nyIw8MuoxWmTN3Lrvvtdegy9AUXH/99T+vqqHtXW9WhsCiRYsYGRkZdBlb+eSPYOHug66iXa6+7Cu8ee97B11Gq9y7YQMveutbB12GpiDJj6eynoeDJKnFDAFJajFDQJJazBCQpBYzBCSpxSYNgST7JrkyyS3N96+/Y5w+SfKXSdYluSnJC7qWLU/y/eaxvN8DkCRNXS+XiG4G3l1V30zyFOD6JJdX1S1dfY6j882PB9H5lshPAi9ubgt4BjBM5yt7r0+yurnnqSRpwCbdE6iq26vqm830L+jcyGPBmG5Lgc9UxzXAXkn2AY4FLq+qTc0b/+XAkr6OQJI0Zdt1TqD5rvYj6Hzne7cFbH1rvQ1N20Tt4217RZKRJCOjo6PbU5YkaYp6DoEkewB/S+cG3n3/GGdVrayq4aoaHhra7k8+S5KmoKcQSDKXTgD8TVV9YZwuG4F9u+YXNm0TtUuSZoFerg4K8GngO1X1vyfothp4U3OV0EuAe5p7vV4GLE4yL8k8YHHTJkmaBXq5OuilwB8ANye5oWl7L7AfQFWdS+dG4K8B1tG5Gfebm2WbkpwFXNesd2ZVbepb9ZKkaZk0BKrqq0Am6VPA2yZYtgpYNaXqJEkzyk8MS1KLGQKS1GKGgCS1mCEgSS1mCEhSixkCktRihoAktZghIEktZghIUosZApLUYoaAJLWYISBJLWYISFKLGQKS1GKGgCS1mCEgSS026U1lkqwC/j1wR1U9b5zlfwz8Xtf2DgaGmruK/Qj4BfAosLmqhvtVuCRp+nrZEzgfWDLRwqo6u6oOr6rDgfcAXxlzC8lXNMsNAEmaZSYNgaq6Cuj1vsAnAhdOqyJJ0g7Tt3MCSZ5EZ4/hb7uaC/hSkuuTrJhk/RVJRpKMjI6O9qssSdI29PPE8OuAq8ccCjq6ql4AHAe8LcnLJlq5qlZW1XBVDQ8NDfWxLEnSRPoZAssYcyioqjY2P+8Avggc2cfnkyRNU19CIMlTgZcDf9fV9uQkT9kyDSwGvt2P55Mk9Ucvl4heCBwDzE+yATgDmAtQVec23X4b+FJV3d+16jOALybZ8jyfrapL+1e6JGm6Jg2Bqjqxhz7n07mUtLttPXDYVAuTJM08PzEsSS1mCEhSixkCktRihoAktZghIEktZghIUosZApLUYoaAJLWYISBJLWYISFKLGQKS1GKGgCS1mCEgSS1mCEhSixkCktRihoAktdikIZBkVZI7kox7a8gkxyS5J8kNzeP0rmVLktyaZF2S0/pZuCRp+nrZEzgfWDJJn3+uqsObx5kASeYA5wDHAYcAJyY5ZDrFSpL6a9IQqKqrgE1T2PaRwLqqWl9VDwMXAUunsB1J0gyZ9B7DPToqyY3AT4H/WlVrgQXAbV19NgAvnmgDSVYAKwD222+/PpWlfviLz30dgHe84agBV9Iuf3xztpo/+9AaUCVb+93zOr8PF79l+34fprretrYFcMvt93LIPntOabv9rOmJqh8nhr8J7F9VhwEfA/7fVDZSVSurariqhoeGhvpQliRpMtMOgaq6t6rua6bXAHOTzAc2Avt2dV3YtEmSZolph0CSX0+SZvrIZpt3AtcBByU5IMmuwDJg9XSfT5LUP5OeE0hyIXAMMD/JBuAMYC5AVZ0LnAC8Nclm4EFgWVUVsDnJqcBlwBxgVXOuQJI0S0waAlV14iTLPw58fIJla4A1UytNkjTT/MSwJLWYISBJLWYISFKLGQKS1GKGgCS1mCEgSS1mCEhSixkCktRihoAktZghIEktZghIUosZApLUYoaAJLWYISBJLWYISFKLTRoCSVYluSPJtydY/ntJbkpyc5KvJTmsa9mPmvYbkoz0s3BJ0vT1sidwPrBkG8t/CLy8qg4FzgJWjln+iqo6vKqGp1aiJGmm9HJnsauSLNrG8q91zV5D54bykqQngH6fEzgZuKRrvoAvJbk+yYptrZhkRZKRJCOjo6N9LkuSNJ5J9wR6leQVdELg6K7mo6tqY5KnA5cn+W5VXTXe+lW1kuZQ0vDwcPWrLknSxPqyJ5Dk+cCngKVVdeeW9qra2Py8A/gicGQ/nk+S1B/TDoEk+wFfAP6gqr7X1f7kJE/ZMg0sBsa9wkiSNBiTHg5KciFwDDA
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"stim_id = 10\n",
"trial_id = stim_id_trial['phase'][stim_id][0]\n",
"unit_id = 0\n",
"t_on, t_off = stim['stim_ontime'][trial_id], stim['stim_offtime'][trial_id]\n",
"t0, t1 = t_off-0.2, t_off+0.1\n",
"stim_prev_id = trial_stim_id['phase'][trial_id-1]\n",
"t_prev_on, t_prev_off = stim['stim_ontime'][trial_id-1], stim['stim_offtime'][trial_id-1]\n",
"spikes = spike_times[unit_id][np.where((t0 < spike_times[unit_id]) & (spike_times[unit_id] < t1))]\n",
"plt.axvspan(t_on, t_off, color=cmap_jet(1-np.abs(stim_id-10)/10), alpha=0.3)\n",
"plt.axvspan(t_prev_on, t_prev_off, color=cmap_jet(1-np.abs(stim_prev_id-10)/10), alpha=0.3)\n",
"plt.eventplot(spikes)\n",
"plt.xlim([t0, t1])\n",
"plt.title('Spikes for unit 0')\n",
"plt.xlabel('Time')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAIUCAYAAADlkX7vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABGYElEQVR4nO3dd3hUZfrG8e+TDqFX6aGDgCCEqmLvvWLBgoqKrrrquuq667quvaxlV5G1V1Qsa8deUEAISJPepJdQU0h/f3/MgV+MSQhJZs6c5P5cVy5mzpzznuedM8w9p5tzDhEREQmWGL8LEBERkX2nABcREQkgBbiIiEgAKcBFREQCSAEuIiISQApwERGRAFKAS1iZmTOzu/2uQ6QsZvatmX1biekOM7M7zSymxPAU73N/SXXVKFIaBbiISOUcBvyd33+PrgeGAh9HuiCpXeL8LkCktjCzROdcrt91AJhZLGDOuQK/a6msst5Pv/vm1TTVj3lL7aI1cPkdM+tmZu+Z2SYzyzGzVWY2wczivNcv8TYRppSY7k4zK+3SfmZmt5vZGjPbZWbfm1m/EiMca2aTzWyHmWWa2SIzu6Nk22bWx8y+MbNsM1tvZncV34RpZklm9qiZzfPa2WBmH5pZj1KK6mhmr3jj5JrZcjN7vMQ4h5rZV2aWYWZZZvaZmfWuwHv4otffoV6/dgEPeq81N7OnzWytN9+FZnZFsWkHen09pZR2nzKzzWYWX2zYFWY221tW6Wb2nJk1KTGdM7N7zOxWM1sB5AF9zKyemf3bW8a53jL/svj7ZWZxZnabV2euma0zs0fMLKkC70Ocmd1iZvO9+jab2cQS7Xf3Pm/bvc/HVDM7rkQ7u5d/b28ZZAJvldc377V9Xn4V+QyZ2Z2E1r4B8r0anPdaqZvQzWxkieX0ipm1KjHOSjN71czONbMFXs1pZnbw3t5rqX20Bi6l+RjYBowB0oE2wAlU/gffRcAq4A9AInAX8JWZdXXObTWzTsAHwNvea3lAV6BTKW39D3geuA84FvgbUATc6b2eCNQH7ia0KbMJcDUwxcx6Ouc2QCi8gWlANnAHsARoDxyze0ZmdiLwvvd+jPQG3wJMMrMDnHOr99LvhsAbwMPAX4BdZtYA+AGo49W8wuvHWAutUf7bOTfdzBZ58/ygWD0JwAjgdedcvjfsfuAm4AngZkLL6m6gt5kNc84VFqvnEmA58CcgC1gHPAqc4tW3BGgKHAQ0Kjbdq8DJwAPAZKAn8E8gBThzL+/BG8BpwGPAl0ASMBxoBSw0s9be+5FB6POxA7gG+NjMTnLOfVqivfeB57xaisrrWxWWX0U+Q88CbYHLgIOBwjLaAkI/soBxwJvAbUBr4F5gsJn1d85lFhv9EKA7oc92DqH3+iMzS3HObS9vPlLLOOf0p789f0AzwAGnlDPOJd44KSWG3xn6SP1mmCP0IyC52LAUIB/4p/f8LG+8BuXM805vnFtLDH+G0Jd/ozKmiwXqeuPcUGz4y0Am0LqceS4FvioxrIHXn8f28j6+6NV7aonhu7+Uu5bSj3Qgznt+O7ALaFhsnNO8NgcVex8LgTtKtHWQN95pJZbDOqBOiXHnAf8qpx+HeNNeVGL4Bd7wfuVMe4Q3znXljPMwUAB0KbHMFgEzS1n+15fSRll9q9DyA74Fvi2nxrI+Q7triisxfoo3/JJi028Evikx3sEl3x9gJaEfz42LDUv1xju/vM+c/mrfnzahS0lbCK3J3G9mo82sazW0+YlzLmv3E+fcSkL7CId6g2YRCvQ3zOwsM2tRTltvlXj+BlAP2LNZ1MzOMbOfzGw7oXDI8sbpXmy6Y4CPnHPrSpuJ1+/OwGveZuA4C+1CyAamEFqL3Jt84KMSw44DfgJWlGj3M0Jrv/t7471KaE3w7GLTXggscs5N854fTWirSMkafyIUNiVrnOic21Vi2HTgEjP7i5mlWmj/ccl684C3S8zjc+/18t6HYwgFzzPljDMcmOqcW7p7gAttNRgP9PO2WBT3Xhnt/KZvVV1+FfwMVVR3oAXwWvGBzrkfgF+BQ0uMP8U5t63Y87nev+0rMW+pwRTg8hvOOUcoGNIIbaZebKF9w2Oq0OzGMoa18ea5lNBm5BjgFWCDtx+05BdbaW3tft4GwMxOJrSZcgFwPjAYGAhsJrT5dremwJpyat79I+I5QkFc/O8kb/q92ex+uwl7d7vDS2lzQrG6cM79CnxPKLQxs0bAiYTen5I1Li2lvfql1Li+lBqvJbRp91JCYb7J2/9bt9g8EggFWPH2NxWvtwxNga2l/GgorkkZdW0ADGhcgT6UNrzSy28fPkMVtft4hLL62aTEsK3Fn7j/P1CvMvOWGkz7wOV3nHPLgYvMzIC+hPZNPmVmK11on2SON2pCiUnL+lJsWcawtcXm+Q3wjZklEtoEfBeh/aApzrn0EtMtL6Xt3W2dCyx1zl2yewQLHfBV8kty9779smzx/r2N0L7bkvLKmXa30g7o20Io/K4vY5pFxR6/AjxjZh0I/cBJILRmXrLGYwhtdi1tXuXW40L7Xm8DbvPmcxZwP6H+3eK1kUNoU3ppSt2C4UkHmphZnXJCfCuwXynD9/PqLdmvsu5/XHJ4VZZfRT9DFbU7kMvq54xKtiu1nNbApUwuZBZwozdo92bqX0s8x9s8eQylO8HMkouNmwIMIbQps+Q8c51zXxM6YjsZ6FhilHNKPD+X0L7s3ZsZ6xLa5FnchYT2Qxb3OXBSyaOAi1lEaH9kL+dcWil/c8qYbm8mAj2AVWW0m1Fs3AlALqH9zRcCk7w1892+IHQgV/sy2lqxL4U55351zj1C6L3cvWwnElrza1jGPMoL8M8JrUVfXs443wFDrNgZDd5m/BHAz865nfvSh2Kqsvwq+hnavWZcpwK1bCT0Wd3DzIYBHQjtgxfZZ1oDl98wswOAxwltQlxK6EvrEkJfaF97o00HlgEPWegUrlxCR+kmltHsLuBzM3vIG+cfwE5CR0BjZlcR2qz8CbCa0IF0txFau5tXoq3R3jynE1orvRy40zm3w3t9InCamT1KaP9zKqHNxNtLtPN3QkfWTzaze72+tgGOc86NdM45M7sGeN87+vstQmuULYFhhAL4X2W+kWV7lFA4TfJqXEToh0oP4BDn3Km7R3TO7TSz9wkdld0KGF28IefcMjN7APiPmXUnFIY5QDtCu0Ge9bZslMnMphA60n0uoR9ChxLa6vKSN49vzWw8oX3g/yJ05H4RoQO1TgBucc4tLq1t59w3ZvYO8C8za0fo8xNPaFl/7Jz71ns/LgG+MLO/E/pcXA10I7TLoFKquPwq+hma7/17k5l9ChQ659JKqaXQQqdEjjOzVwltRWkD3EPoyP/nK9tPqeX8PopOf9H1R2jf4UvAYkIH/GwlFAzHlhivF6E1h0xCp4jdSNlHod9D6DSlNYQCZhLFjl4mdDDb+4TCO5fQvsIJQPdi49zptdUb+IbQj4INhE6xiSk2Xgyh03/WefV/BxxIaG3sxRK1dSZ0sFS6V9cyShyR7dX2EaFNuTleO28AQ/fyPr4IrCnjtcaEgmv3OcubvPfkj6WMe6LX798ckV5inAsJHRSY5S2PBcB/gLYllsPdpUz7APAzodO3sggF+XUlxokhtMl/tvce7PAeP1hWTcWmjSN0RP1ir6+bCf1QK75suxM6PXCH1/5UQj+kireze/nHlTKPUvtW0eVHiaPQK/oZIvTj9klv+RWx5xCS3x6FXmz8kd77lktoE/8rQKsS46wEXi2jj3f6/f2gv+j6M+fK2qUkEj2KXTgj3gX46mEiItVF+8BFREQCSAEuIiISQNqELiIiEkBaAxcREQkgBbiIiEgAKcBFREQCSAEuIiISQApwERGRAFKAi4iIBJACXEREJIAU4CIiIgGkABcREQkgBbiIiEgAKcBFREQCSAEuIiISQApwERGRAFKAi4iIBJACXEREJIAU4CIiIgGkABcREQkgBbiIiEgAKcBFREQCSAEuIiISQApwEREJLDNzZtalktNeYGafV3dNkWLOOb9rEBERqRQzc0BX59zSvYyXAqwA4p1zBZG
"text/plain": [
"<Figure size 504x504 with 7 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"from matplotlib import gridspec\n",
"\n",
"fig, ax = plt.subplots(3,1,figsize=(7,7))\n",
"gs0 = gridspec.GridSpec(3, 3, figure=fig, hspace=0, wspace=0)\n",
"\n",
"stim_id = 10\n",
"trial_id = stim_id_trial['phase'][stim_id][0]\n",
"unit_id = 0\n",
"t_on, t_off = stim['stim_ontime'][trial_id], stim['stim_offtime'][trial_id]\n",
"t0, t1 = t_off-0.2, t_off+0.1\n",
"stim_prev_id = trial_stim_id['phase'][trial_id-1]\n",
"t_prev_on, t_prev_off = stim['stim_ontime'][trial_id-1], stim['stim_offtime'][trial_id-1]\n",
"spikes = spike_times[unit_id][np.where((t0 < spike_times[unit_id]) & (spike_times[unit_id] < t1))]\n",
"\n",
"ax0 = fig.add_subplot(gs0[0, :-1])\n",
"ax1 = fig.add_subplot(gs0[1, :-1])\n",
"ax2 = fig.add_subplot(gs0[2, :-1])\n",
"ax3 = fig.add_subplot(gs0[:, -1])\n",
"\n",
"ax0.axvspan(t_on, t_off, color=cmap_jet(1-np.abs(stim_id-10)/10), alpha=0.3, label='preferred')\n",
"ax0.axvspan(t_prev_on, t_prev_off, color=cmap_jet(1-np.abs(stim_prev_id-10)/10), alpha=0.3, label='non-preferred')\n",
"ax0.eventplot(spikes)\n",
"ax0.set_xlim([t0, t1])\n",
"ax0.legend(loc='upper left')\n",
"\n",
"ax1.axvspan(t_on, t_off, color=cmap_jet(1-np.abs(stim_id-10)/10), alpha=0.3)\n",
"ax1.axvspan(t_prev_on, t_prev_off, color=cmap_jet(1-np.abs(stim_prev_id-10)/10), alpha=0.3)\n",
"ax1.eventplot(spikes-0.05)\n",
"ax1.set_xlim([t0, t1])\n",
"\n",
"ax2.axvspan(t_on, t_off, color=cmap_jet(1-np.abs(stim_id-10)/10), alpha=0.3)\n",
"ax2.axvspan(t_prev_on, t_prev_off, color=cmap_jet(1-np.abs(stim_prev_id-10)/10), alpha=0.3)\n",
"ax2.eventplot(spikes-0.15)\n",
"ax2.set_xlim([t0, t1])\n",
"\n",
"ax3.plot(np.sin(np.pi*tau_id_range/300), np.arange(300))\n",
"ax3.set_xticks([])\n",
"ax3.set_yticks([])\n",
"ax3.set_title('reverse correlation')\n",
"# ax2.legend()\n",
"for ax in fig.get_axes():\n",
" ax.tick_params(bottom=False, labelbottom=False, left=False, labelleft=False)\n",
"\n",
"ax2.tick_params(bottom=True, labelbottom=True)\n",
"ax2.set_xlabel('t/s')\n",
"plt.tight_layout()\n",
"fig.suptitle('subspace reverse correlation', size=16, y=1.05)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeUAAAG5CAYAAACwfCzuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA+h0lEQVR4nO3de5xd873/8de7JhFyRyRpEkncpVIhiUQpyqlbnVIHpUhSKtrS8jtOUbQc5RxtlVbr0hASTtzqXrcWx7V1OUmohFBBQshIlNxEyMTn98daM90ZM5M9l73Xmtnv5+OxH7PXd90+a82e/Zm11md9lyICMzMzy97nsg7AzMzMEk7KZmZmOeGkbGZmlhNOymZmZjnhpGxmZpYTTspmZmY54aRsViKS7pc0Pn0/QdKTJVzXZpJWSFqvVOtoYt0rJG1e7vWadUROymZNkLSbpL9KWirpfUl/kTS6mHkjYv+ImFrqGNN1vRkR3SJiTTnWV2/d3SLidQBJUySdX+4YzDqKqqwDMMsrST2Ae4DvAbcAnYEvAx9nGZeZdVw+UjZr3NYAEXFjRKyJiI8i4s8R8QLUnZL+i6TfpUfSL0vau3ZmSY9K+k5DC5b0S0lPSuqZviZLWijpbUnn156GlrSlpMfS5b8n6eZGljdEUkiqKlj3z9L4lkv6s6RNGpn3M6fW02Vtmb6fIukySfemy3pG0hb1p5U0ETgKOC09pf3HdPzp6XYtl/RK4T4ys7U5KZs17u/AGklTJe0vqXcD04wBXgM2Ac4Bbpe0UWMLlPQ5SVcBXwT2iYilwBSgBtgS2BHYB6hN5j8D/gz0BgYCv21G/N8Cvg1sSnKU/x/NmLe+I4D/TOOYC1xQf4KImARMA36RntL+V0nbACcBoyOiO7AvMK8VcZh1aE7KZo2IiGXAbkAAVwGLJd0tqW/BZIuAX0fE6oi4GXgF+Foji+wE3AhsBPxrRKxMl3UAcEpEfBgRi4BLSJIgwGpgMPD5iFgVEc0pFrs2Iv4eER+RnH4f0Yx567sjIp6NiBqSxFvsstYA6wPDJHWKiHkR8Vor4jDr0JyUzZoQEXMiYkJEDAS2Bz4P/Lpgkrdj7ae6zE+naciWwEHAf0bEJ2nbYJJkvVDSEklLgN+THN0CnAYIeFbSi5KObUb41QXvVwLdmjFvmywrIuYCpwDnAosk3SSpsf1jVvGclM2KFBEvk5xq3r6geYAkFQxvBrzTyCLmkJxOvj89rQvwFknh2CYR0St99YiIL6TrrI6I4yPi88AJwOW113rb0IfAhrUDkvq1YlmfeexcRNwQEbuR/AMSwM9bsXyzDs1J2awRkraVdKqkgenwIOBI4OmCyTYFfiipk6TDgO2A+xpbZkTcCJwJPCRpi4hYSHLN+FeSeqTXnLeQtEe6zsNq1w98QJLUPm3jTf0b8AVJIyR1ITmqbal3gbp7liVtI2kvSesDq4CPaPv4zToMJ2Wzxi0nKeR6RtKHJMl4NnBqwTTPAFsB75EUPx0aEf9oaqHpvcvnAf8raQgwjqQQ6yWSxHsr0D+dfHS6/hXA3cDJtfcEt5WI+Hsaz0PAq0BrOjmZTHL9eImkO0muJ19Isn+qSf6J+XGrAjbrwLT25TAzK5akCcB30lOzZmat5iNlMzOznHBSNjMzywmfvjYzM8sJHymbmZnlRLt+IMUmm2wSQ4YMyToMMzPLkRkzZrwXEX2yjqMl2nVSHjJkCNOnT886DDMzyxFJ87OOoaV8+trMzCwnnJTNzMxywknZzMwsJ5yUzczMcsJJ2czMLCeclM3MzHLCSdnMzCwnnJTNzMxywknZzMwsJ5yUzczMciJ33WxK2g/4DbAecHVEXJhFHN/8/VMA3HzCLm3S1pL1FTO+JetqrabW2ZJ9VPse4KWFyxjWv0dR21OKbW/OMttq/YXb39rl1Y+pof1c+752XxeutznbNPzcPwEw69x9WxxvVpraL7Xvyx3PSwuXAaz1+W/u31pTy6+dtqnPW7HTNbb+pj5/rYm/kuTqSFnSesBlwP7AMOBIScOyjcrMzKw8cpWUgZ2BuRHxekR8AtwEHJRxTGZmZmWRt6Q8AHirYHhB2lZH0kRJ0yVNX7x4cVmDMzMzK6W8JeV1iohJETEqIkb16dMuH5dpZmbWoLwl5beBQQXDA9M2MzOzDk8RkXUMdSRVAX8H9iZJxv8HfCsiXmxo+lGjRsX06dPLGGHpKgabU/XYFutqqNKzrZdfu+y2qlDPk8Z+R+tqb4vtLde+K/ycAJ+p1C51LA3ty3L8/XUEtZXxw/r3aLDKvlTysh8lzYiIUZkG0UK5uiUqImoknQT8ieSWqGsaS8hmZmYdTa6SMkBE3Afcl3UcZmZm5Za3a8pmZmYVy0nZzMwsJ5yUzczMciJX1dfNlUX1NeSnwrAj8L40s7bWnquvfaRsZmaWE07KZmZmOeGkbGZmlhNOymZmZjnhpGxmZpYTuevRqz0oVz+/te2l7qe6cH1tMW/99oaGS7lN5dSc/ddQ/+ZN9efckt9NY/u+Vmt+z8Ba/SiX83dYzv6+y7GehtZVqj7vm9uvflt87hpbbyn7L+8ofKRsZmaWE07KZmZmOeGkbGZmlhNOymZmZjnhpGxmZpYT7vu6FUpVRZi36sRi4ik25lJVmFrpNFVNn7fPquVD1p8L931tZmZmreakbGZmlhNOymZmZjnhpGxmZpYTTspmZmY5kbvqa0nzgOXAGqCmqQq6tqi+zrpKsK219fZ0tP1jTWvp79ufk+briPssL9vUnquv8/pAiq9ExHtZB2FmZlZOPn1tZmaWE3lMygH8WdIMSRPrj5Q0UdJ0SdMXL16cQXhmZmalkcekvFtE7ATsD5woaffCkRExKSJGRcSoPn36ZBOhmZlZCeQuKUfE2+nPRcAdwM7ZRmRmZlYeuaq+ltQV+FxELE/fPwicFxEPNDR91n1fW+vkpVKz0rniOn+8b1vH1ddtpy9whyRIYruhsYRsZmbW0eQqKUfE68AOWcdhZmaWhdxdUzYzM6tUTspmZmY54aRsZmaWE7mqvm6uclVf56kSspyx1K6rVh62v73I02cGyhdP1tud9fpb4pu/f4qXFi5jWP8eDcbdHrepOUqxfe25+tpHymZmZjnhpGxmZpYTTspmZmY54aRsZmaWE07KZmZmOeHq6xyrlIrZUuvo29cc5dgXbbEO/85aJi/7rbE4CtvrT9OWsbv62szMzFrNSdnMzCwnnJTNzMxywknZzMwsJ5yUzczMcsLV101oTjVgW1c95qWKslQ6+vZlpTWfWf9Ostdefwd5i9vV12ZmZtZqTspmZmY54aRsZmaWE07KZmZmOZFJUpZ0jaRFkmYXtG0k6UFJr6Y/e2cRm5mZWVYyqb6WtDuwArguIrZP234BvB8RF0o6A+gdEac3tZws+74ud7/UtbKsbizFNuetarNSteT34OrttpHn/Zbn2Jri6utmiojHgffrNR8ETE3fTwUOLmdMZmZmWcvTNeW+EbEwfV8N9M0yGDMzs3LLU1KuE8k59QbPq0uaKGm6pOmLFy8uc2RmZmalk6ek/K6k/gDpz0UNTRQRkyJiVESM6tOnT1kDNDMzK6U8JeW7gfHp+/HAXRnGYmZmVnZZVV/fCOwJbAK8C5wD3AncAmwGzAcOj4j6xWBrybL6ulB7rVC0yuaKayulLD8b7bn6uiqLlUbEkY2M2rusgZiZmeVInk5fm5mZVTQnZTMzs5xwUjYzM8uJTAq92kpeCr3Mag0/90+s/LiGDddPyjWG9e/hIihrV4ot0Gqo6G/6vKQ2N+vPf3su9PKRspmZWU44KZuZmeWEk7KZmVlOOCmbmZnlRKuSsqRdi2kzMzOzdWtV9bWkmRGx07raSsXV1+XlLhVbprH91t73Z3uP30qnLbpwbY32XH3dom42Je0CfAnoI+nfC0b1ANZri8DMzMwqTUv7vu4MdEvn717Qvgw4tLVBmZmZVaIWJeWIeAx4TNKUiJjfxjGZmZlVpJaevv51RJwC/E7SZy5KR8TXWxuYmZlZpWnp6evr058XtVUgZmZmlc59X+eEK1mtrZXqM1Wuz2pHrFp
"text/plain": [
"<Figure size 504x504 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# subspace reverese correlation\n",
"stim_id = 13\n",
"ref_trial_id = stim_id_trial['phase'][stim_id][0]\n",
"stim_prev_id = trial_stim_id['phase'][ref_trial_id-1]\n",
"past_trials = 3\n",
"future_trials = 10\n",
"trial_range = np.arange(-past_trials, future_trials+1) + ref_trial_id\n",
"\n",
"units = np.arange(num_unit)\n",
"orientation, phase, t_on = np.array(stim[['grat_orientation', 'grat_phase','stim_ontime']].iloc[trial_range]).T\n",
"spikes = [\n",
" spike_times[unit_id][\n",
" # Where the spike occurs during the stimulus period in one of the right trials\n",
" np.where((t_on[0] < spike_times[unit_id]) & (spike_times[unit_id] < t_on[-1]))\n",
" ]\n",
" for unit_id in units]\n",
"\n",
"fig, ax = plt.subplots(2,1,figsize=(7,7))\n",
"plt.subplots_adjust(hspace=0)\n",
"s = 1\n",
"ax[0].eventplot(spikes, linelength=s, lineoffsets=s)\n",
"\n",
"ref_id = list(trial_range).index(ref_trial_id)\n",
"# ax[0].axvspan(t_on[ref_id], t_on[ref_id]+0.08, color=cmap_jet(1-np.abs(stim_id-10)/10), alpha=0.3)\n",
"# ax[0].axvspan(t_on[ref_id-1], t_on[ref_id-1]+0.08, color=cmap_jet(1-np.abs(stim_prev_id-10)/10), alpha=0.3)\n",
"ax[0].set(ylabel='unit')\n",
"ax[0].invert_yaxis()\n",
"ax[1].step(t_on, phase, 'b', where='post', alpha=0.5, label='phase')\n",
"ax[1].set(xlabel='t / s', xlim=[t_on[0], t_on[-1]], ylim=[0, 360], ylabel='phase')\n",
"ax[1].legend(loc='upper left')\n",
"ax2 = ax[1].twinx()\n",
"ax2.step(t_on, orientation, 'r', where='post', alpha=0.5, label='orientation')\n",
"ax2.set(ylim=[0, 180], ylabel='orientation')\n",
"ax2.legend()\n",
"ax[0].set_title('Spikes in units')\n",
"ax[1].set_title('Phase and orientation')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "afc70624cbfe4a5f8838bce9ae0c0ebc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"interactive(children=(IntSlider(value=0, description='delay/ms', max=299), IntSlider(value=0, description='uni…"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"@widgets.interact(key=widgets.RadioButtons(options=key_list[1:],\n",
" description='stimulus:',\n",
" disabled=False), tau_id=widgets.IntSlider(0, min=0, max=max_delay-1, description='delay/ms'), unit_id=widgets.IntSlider(0, min=0, max=num_unit-1))\n",
"\n",
"def PSSH(tau_id, unit_id, key):\n",
" fig, ax = plt.subplots(1, 1, figsize=(7,6))\n",
" prob = stim_hist[key][unit_id, tau_id]\n",
" n = sorted_spike_num[unit_id]\n",
" confidence_interval = np.sqrt(prob/n)\n",
" plt.errorbar(stim_val[key], stim_hist[key][unit_id, tau_id], yerr=confidence_interval)\n",
" ymin = np.min(stim_hist[key][unit_id])*0.95\n",
" ymax = np.max(stim_hist[key][unit_id])*1.05\n",
" ax.set_ylabel('$\\mathcal{P}($'+key_symbol[key]+'$|\\\\tau)$')\n",
" ax.set_xlabel(key_symbol[key])\n",
" plt.ylim([ymin, ymax])\n",
" plt.suptitle('Distribution of stimulus at time $\\\\tau$ before a spike of unit: %d'%unit_id)\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Problem with the data\n",
"\n",
"The picture a couple of cells below clearly shows that there is a shift in the stimulus presentation times. Let's fix it!"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/lib/python3.10/site-packages/pandas/core/roperator.py:13: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n",
" return right - left\n"
]
}
],
"source": [
"trial_spike_times = np.ndarray((num_unit, num_trial), dtype=object)\n",
"delta_t_on = 0.2 # 200ms\n",
"delta_t_off = 0.3\n",
"for trial_id in range(num_trial):\n",
" t_on, t_off = stim['stim_ontime'][trial_id]-delta_t_on, stim['stim_offtime'][trial_id]+delta_t_off\n",
" for unit_id in range(num_unit):\n",
" trial_spike_times[unit_id, trial_id] = spike_times[unit_id][np.where((spike_times[unit_id] < t_off) & (spike_times[unit_id] > t_on))]\n",
"subseq_trials = 5\n",
"subseq_spike_times = np.ndarray(num_unit, dtype=object)\n",
"for unit_id in range(num_unit):\n",
" subseq_spike_times[unit_id] = [np.concatenate(trial_spike_times[unit_id][i:i+subseq_trials]) for i in range(num_trial-subseq_trials)]\n",
"\n",
"subseq_spike_times_locked = {}\n",
"subseq_spike_times_locked['ontime'] = [subseq_spike_times[unit_id] - stim['stim_ontime'][:-subseq_trials] for unit_id in range(num_unit)]\n",
"subseq_spike_times_locked['offtime'] = [subseq_spike_times[unit_id] - stim['stim_offtime'][:-subseq_trials] for unit_id in range(num_unit)]"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"time_range = np.arange(0, stim['stim_ontime'].max(), np.array(sorted(np.diff(stim['stim_ontime'], n=1))[10:-10]).mean())"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((28, 19995), (28, 19995), 0.7671829999999886)"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"subseq_spike_times_len = len(subseq_spike_times[0])\n",
"subseq_spike_times_locked['ontime'] = np.array(subseq_spike_times_locked['ontime'])\n",
"subseq_spike_times_locked['offtime'] = np.array(subseq_spike_times_locked['offtime'])\n",
"from itertools import chain\n",
"subseq_spike_times_locked['ontime'].shape, subseq_spike_times_locked['offtime'].shape, max(chain(*subseq_spike_times_locked['ontime'].flatten()))"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJsCAYAAAAsihANAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAADTXElEQVR4nOzdefwdVX3/8fdJAgQwYRUIIkYRQRZBQZG6BVHEFdta0FbrvlTtrhVcA2JBq/2ptSrWBax7tXUDBEEQ0SAICkgEZYsCEWRNILIknN8f3zthvpOZe2fmzlnmzOv5ePAg937vcu58536+cz7nc84x1loBAAAAAAAAPs0J3QAAAAAAAAAMD0kpAAAAAAAAeEdSCgAAAAAAAN6RlAIAAAAAAIB3JKUAAAAAAADgHUkpAAAAAAAAeEdSCgAAIDLGmE8aY94Vuh0AgOkQz4HxjLU2dBsAAABQwRizRNIXrLU7jXnMQZLeLelxkm6z1i720jgAQG014/k/SvpbSdtKulPSVyW91Vq71kcbAd+olAIAAOi/uyR9VtJbQzcEADCVb0t6nLV2oaS9JO0j6e/CNglwh6QUAACAA8YYa4x5ZO72icaYY0f/XmKMuc4Y88/GmJuMMSuNMa8sPtYYs7mkUyXtaIy5c/TfjsX3staeb639b0lXe/hoADAonuP5Vdba27OnS7pf0iOLjwNSQVIKAAAgjB0kbSHpIZJeLek/jTFb5R9grb1L0rMl3WCtfdDovxv8NxUAMEan8dwY85fGmFWSbtZMpdQJTlsPBERSCgAAIIz7JB1jrb3PWnuKZtYO2S1wmwAAzXUaz621XxpN33uUpE9KurGbZgLxISkFAAAQxi2FhWvXSHpQqMYAAFpzEs+ttb+RdJmkj0/7WkCsSEoBAAC4sUbSZrnbO7R8HbZKBoCwQsbzeZJ2afl+QPRISgEAALjxC0l/aYyZa4w5VNLTWr7OjZK2McZsUfUAY8wcY8x8SRvN3DTzjTEbt3w/AMBsv5C/eP4aY8x2o3/vIekoSWe2fD8geiSlAAAA3Ph7Sc+XdLukv5L0zTYvYq29XNKXJV1tjLm9bLcmSU+V9EdJp0jaefTv09u8HwBgAz7j+ZMkXWqMuUszMf0USW9v835AHxhrqQgHAAAAAACAX1RKAQAAAAAAwDuSUgAAAAAAAPCOpBQAAAAAAAC8IykFAAAAAAAA70hKAQAAAAAAwLt5oRvg27bbbmsXL14cuhkAgClde+21Ip4DQP8RzwEgDRdeeOHN1toHN3nO4JJSixcv1s9+9rPQzQAATGn//fcnngNAAojnAJAGY8yKps9h+h4AAAAAAAC8IykFAAAAAAAA70hKAQAAAAAAwDuSUgAAAAAAAPCOpBQAAAAAAAC8IykFAAAAAAAA70hKAQAAAAAAwDuSUgAAAAAAAPCOpBQAAAAAAAC8IykFAAAAAAAA70hKAQAAAAAAwDuSUgAAAAAAAPCOpBQAAAAAAAC8IykFAAAAAAAA70hKAQAAAAAAwDuSUgAAAAAAAPCOpBQAAAAAAAC8IykFAAAAAAAA70hKAQAAAAAAwLveJ6WMMYcaY64wxlxpjDkydHsAAAAAAAAwWa+TUsaYuZL+U9KzJe0h6SXGmD3CtgoAAAAAAACTzAvdgCk9QdKV1tqrJckY8xVJh0laHrRViMqae9dKkozMzP/N7J9nt4s/N+t/bgq3H7gPAAAAAAC00/ek1EMk/S53+zpJBwRqCyK1/7FnaM2965y+R51E1szt2Q80JT+b9Fqq+rmZuW+OMTrqOY/Wi/bbaboPBQAAAACAQ31PStVijHmdpNdJ0s477xy4NfDtnw/ZTfetu1+SZO3MfVZ21u2MtbbwuOrn2AeeNOt2/vHFxxZfSxv8/IH3qHpOZZtHt79y/u906XW3k5QCAjnihGWSpK++/sDSn++99DRJ0qVLn9X5e2evXeTivcrsctTJkqSrjntu56+9+MiZ1772+Oeu/3fm2uPdvZ/P98l/tuJ7Vd3fN1W/u7Lfb/azrs8rl+dp0d5LT9Pqu2cqthfMn7nsXn33Wi2YP2/W99JlXJAeiEuZr77+wImxKjXjPm/+Z1WPKzuGPrk+R3ybFAuK97t6/7avX/b8Ovf5+ny+NT2exTicv10Vo9vG7uLz8t+lab5X+edmnz8f5yW/v98+x3Rjiz3cHjHGHChpqbX2WaPbR0mStfa4qufsv//+9mc/+5mnFgL+7XvM6Tpsnx119GF7hW4K4NT++++vWOK5685KnQsoHx2W7MKuiutkVEhN2jHusdN8nliORVuh21/V6fGRpMqSU1mHRXKfXMjHpeUrV2mPRQvX346t0xJTPM+blKDycRzLYnsxFufP3XHnc9nPquJ6WbJgWl3E0S7iyLgkeJ33CR3L+mLaBFzdc2/cee0jxqeWMJ6WMeZCa+3+jZ7T86TUPEm/lnSwpOslXSDpL621l1U9h6QUUnX//VYfPuPX+ugPrlx/32/e92xtNLfX+xkAlXx1YtoknOqMundlXGe37YWSz0qSMl12RrrqPITohJRd0Bcrq7p8n3EdNB98VBDsctTJWje69J1r/J7jITouZYmp2BJSUnfxfNp4Oy52l/1s+cpVktwNEkyqfg0dq6cxLu5MikNNfz7t6/VVk9jeZeWYr0pjbBjzYqiWGlxSSpKMMc+R9GFJcyV91lr7vnGPJymFVB3+yWU6/9pbZ9137Av30kuf+LBALQLcinVkHQDQDPEcANLQJinV+zWlrLWnSDoldDuA0F75pMWzklLz5hj91QGsoQb45HuEqriGQcb1FL51dqbKJNPHUfpxmo6yu3r/jOt2VFVfpVo9MEnXFU2+K6SqRs4zMVZKYbLieeS6Ssrn9CfXU+XGrfWUSTHOlVUsZVzE+ibTIrNriKrp1Jkm51zb83RcjG77s6qfN71OLHt8ijG995VSTVEphdSxphSGgpF1AEgD8RwA0jDISikAAKYxTXWTz7Wj2ui6QiM/gplVS7mskhpqpU6fTRodL/uZL+N2e3KhzSh6mRhjCwCE0Od11FCNSikgEbfeda+e85Ef6fer7pYknfPWg7TzNpsFbhXgDiPrAJAG4jkApIFKKWDAvnLBb9cnpCTpO5fcoDcd9MiALQKGYWhVDL5GKYdcJeXjs6d6fOucn4y0YxouY37d6rmm57DP9aHaSDUexSTFY1xcfyoT07mNeqiUAhJhrdWyq27RX376p1qy24N14iufELpJgFOMrPsRugMT24W0y/bE9lljEfIcbDIFNntsJnuO74XO+4h4HheX37lxC4y7XvA8hL62uwt9/uxl8Tx/3+q712rB/HnE9RJtKqVISgGJYaFzDEXITsyknU9CVk+57ACHTlClLPSaS33uPNThez2pkI44YZmWr1ylPRYt7E0FZ4h43nSXwqFVxcYs9XiF6aUa47P4LinaGE9SqgaSUkjZuvutdnn7Kdr7IVvoQ4fvo0dtvyB0kwBnXHRiutiqN1VlF3i+tgnP0AEBHjDNRguxxS4qpcJLtRM/VF0k7tr+DSZpOGwkpWogKYWUFf94fP0NB2r/xVsHag3gVgydGJ8VCUwBGq+ri+CuEmF12zNpt7pQF/Wu3j/k5yquP+Ky8x3y+1pVARRLAqpMDPG8Sh+OHzaUjzVV/276OmW3i4/LtHkvtENCNS4kpWogKYWUHf7JZTr/2lvX375k6SFaOH+jgC0C3Im5E4PphL6Qn6YDM+175qXakRlCBVwxKVWWpOoqcZVC0iT2eF51jH0mH4vvNc1i5yGEjuuAT65iQx8GHUhK1UBSCqljTSkMRQydmGmmz3St6gKoywujXY46WeusNNf428UpRAKDEW9MUvd7VVwsN+Ozgip0bKojhniOMIitcejib63L3+U01xtdX6u4SDiNu56sE8NjivMkpWogKYXUkZTCUPShE+PiIsFlxUUd4y7uur7wG1c91MeOTFmbY64a6uMxLlOWTM3fTkFxke5MDB2UOmKK56luVOFD1YYNZdWnRX2PM0XTThN0/XqpKNvEIovvmT7H+arYnokxxpOUqoGkFFJ19R/u1NM/9MNZ9/3
"text/plain": [
"<Figure size 1440x720 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"unit_id = 1\n",
"unit_id_2 = 3\n",
"\n",
"fig, ax = plt.subplots(1,3, figsize=(20,10))\n",
"ax[0].plot(np.diff(stim['stim_ontime'], n=2), np.arange(20000-2))\n",
"ax[0].invert_yaxis()\n",
"ax[0].set_xlabel('$\\Delta^2[t_{on}]=\\Delta$ trial duration / s', size=20)\n",
"ax[0].set(ylabel='trials')\n",
"ax[1].eventplot(subseq_spike_times_locked['ontime'][unit_id], lineoffsets=1, linelengths=0.8)\n",
"ax[1].set(title='unit %d'%unit_id, yticks=[], xlabel='t/s (locked to trial onsets)')\n",
"ax[1].invert_yaxis()\n",
"ax[2].eventplot(subseq_spike_times_locked['ontime'][unit_id_2], lineoffsets=1, linelengths=0.8)\n",
"ax[2].set(title='unit %d'%(unit_id_2), yticks=[], xlabel='t/s (locked to trial ends)')\n",
"ax[2].invert_yaxis()\n",
"plt.subplots_adjust(wspace=0)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"_Whaaat?_\n",
"\n",
"Ok, we've gotta fix it.\n",
"\n",
"Let's take the \"bad\" times, identify the periods we want to calibrate - and align everything"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2280 2286 2291 2292 2295 2298 2301 2307 2377 2378 2380 2383 2386 2464 2467 2469 2472 2475 2478 15300 15306 15312 15315 15316 15318 15327 15329 15333 15336 15338 15342 15344 15348 15349 15402 15403 15405 15408\n"
]
}
],
"source": [
"stim_2diffs = np.diff(stim['stim_ontime'], n=2)\n",
"print(*[i for i in range(len(stim_2diffs)) if stim_2diffs[i] > 0.01])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Periods:\n",
"$[0, 2350)$, $[2350, 15350)$, $[15350, 20000]$"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_4135643/175591453.py:20: DeprecationWarning: Please use `gaussian_filter1d` from the `scipy.ndimage` namespace, the `scipy.ndimage.filters` namespace is deprecated.\n",
" period_1_dist = scipy.ndimage.filters.gaussian_filter1d(period_1_dist, sigma=10)\n",
"/tmp/ipykernel_4135643/175591453.py:21: DeprecationWarning: Please use `gaussian_filter1d` from the `scipy.ndimage` namespace, the `scipy.ndimage.filters` namespace is deprecated.\n",
" period_2_dist = scipy.ndimage.filters.gaussian_filter1d(period_2_dist, sigma=10)\n",
"/tmp/ipykernel_4135643/175591453.py:22: DeprecationWarning: Please use `gaussian_filter1d` from the `scipy.ndimage` namespace, the `scipy.ndimage.filters` namespace is deprecated.\n",
" period_3_dist = scipy.ndimage.filters.gaussian_filter1d(period_3_dist, sigma=10)\n"
]
}
],
"source": [
"p1, p2 = 2350, 15350\n",
"delta_t = 0.002\n",
"time_range_smoothing = np.arange(0, 0.8, delta_t)\n",
"period_1_dist = np.zeros(len(time_range_smoothing) - 1)\n",
"period_2_dist = np.zeros(len(time_range_smoothing) - 1)\n",
"period_3_dist = np.zeros(len(time_range_smoothing) - 1)\n",
"num_units = subseq_spike_times_locked['ontime'].shape[0]\n",
"for i in range(num_units):\n",
" for j, row in enumerate(subseq_spike_times_locked['ontime'][i]):\n",
" hist = np.histogram(row, bins=time_range_smoothing)[0]\n",
" if j < p1:\n",
" period_1_dist += hist\n",
" elif j < p2:\n",
" period_2_dist += hist\n",
" else:\n",
" period_3_dist += hist\n",
"period_1_dist /= num_units\n",
"period_2_dist /= num_units\n",
"period_3_dist /= num_units\n",
"period_1_dist = scipy.ndimage.filters.gaussian_filter1d(period_1_dist, sigma=10)\n",
"period_2_dist = scipy.ndimage.filters.gaussian_filter1d(period_2_dist, sigma=10)\n",
"period_3_dist = scipy.ndimage.filters.gaussian_filter1d(period_3_dist, sigma=10)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.collections.EventCollection at 0x7f1b53e02f80>]"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAR8CAYAAAAtjbjDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAD4kUlEQVR4nOzdd3hcZ5328e8z6rJ6r5Yt997kuMWOnd4TUkgoIYFACBA6LLDAvrCwC0sJnZBAQgqphJBCqu0k7k3u3bJlW5Zs9W5ZdZ73D42C4riozMwZSffnunRZOnPOmd+JbOXWU421FhEREREJPC6nCxARERGRM1NQExEREQlQCmoiIiIiAUpBTURERCRAKaiJiIiIBCgFNREREZEApaAmIiIiEqAU1ERk0DHG3GeMyTfGtBhjHu3FdUeMMZf6sLTT32+EMcYaY4L99Z4iMrDoh4OIDEbHgR8DVwARDtdyRgpnItITalETkUHHWvuCtfZFoOr014wxScaYfxljao0x1caYVcYYlzHmCWA48IoxptEY8x9nuHaxMabYGPOfxphKTwvcx7q9fo0xZqsxpt4Yc8wY84Nur3W1nt1tjCkC3gZWel6u9bznPO/+lxCRgU6/0YnIUPN1oBhI9nw9F7DW2juMMQuBT1trl53j+jQgCcj0XPuaMSbfWrsfOAl8AtgNTAaWGmO2eUJjl4uACYAbSAUOA3HW2nZvPaCIDB5qURORoaYNSAdyrLVt1tpVtvebHn/fWttirV0BvAp8GMBa+661dqe11m2t3QE8TWcw6+4H1tqT1tpT/X0QERn8FNREZKj5OXAQeMsYU2iM+XYvr6+x1p7s9vVRIAPAGDPHGPOOMabCGFMH3Etn61t3x/pauIgMPQpqIjKkWGsbrLVft9bmAtcDXzPGXNL1cg9uEW+MGdbt6+F0Tl4AeAp4Gci21sYCfwLM6SWc5XMRkQ9QUBORQccYE2yMCQeCgCBjTHjXLEtjzLXGmNHGGAPUAR10jhcDKANye/AWPzTGhHrGtF0L/N1zPBqottY2G2MuAD56nvtUeN67J+8pIkOQgpqIDEbfA04B3wY+7vn8e57XxgDLgEZgHfBHa+07ntd+AnzPMyP0G2e5dylQQ2cr2pPAvdbafZ7XPg/8tzGmAfgv4LlzFWmtbQL+B1jjec+5vX5SERnUTO/H0IqIDE3GmMXA36y1WQ6XIiJDhFrURERERAKUgpqIiIhIgFLXp4iIiEiAUouaiIiISIBSUBMREREJUINyr8+kpCQ7YsQIp8sQEREROa/NmzdXWmuTz/TaoAxqI0aMID8/3+kyRERERM7LGHP0bK+p61NEREQkQCmoiYiIiAQoBTURERGRAKWgJiIiIhKgFNREREREApSCmoiIiEiAUlATERERCVAKaiIiIiIBSkFNREREJEApqImIiIgEKAU1ERERkQA1KPf6FPGVzUdrOFTRyPCESObmJjpdTr9Za1lZUMk7+8oZkRjJh2ZkERsZ4nRZIiLioaAm0gOt7W6+/+Iuns0/9t6xq6ek8ctbpxMRGuRgZX3X4bZ86emtvLrzBKFBLlo73Px17REevjOP0SnRTpcnIiKo61OkR/73tb08m3+Mey8axar/WMI3rxjH67tK+fYLO7DWOl1en/zg5d28uvME37h8LLt+eAV/v3ceJ1s6uPORTTQ0tzldnoiIoKAmcl5v7S7l0bVHuPvCkXz7qvFkJ0TyhSWj+cbl43hp23Ge3XTs/DcJMOsLq3hi/VE+feFI7rt4DKHBLmaPSODBO2Zxou4UP3xlj9MliogICmoi59Te4eanr+9jbGoU375q/Pte+/ziUcweEc8v3jrAyZZ2hyrsvfYONz94eTeZcRF844px73ttVk489140iuc3F7OrpM6hCkVEpIuCmsg5PL+5mMLKk3zj8nGEBL3/n4sxhm9fNYHKxhYeXn3YoQp7743dpewrbeA7V48nPOSD4+vuXTyKmPBgfru8wIHqRESkOwU1kbOw1vLQykKmZcVy2cTUM54zKyeeSyek8OjaIzS3dfi5wr55ePVhchIjuXpy+hlfjwkP4VMXjuStPWXsK633c3UiItKdgprIWaw9VEVh5UnuWjACY8xZz7tr/kiqT7by2s4Tfqyub7YW1bC1qJZPzh+By3WuZxpBaLCLpzcU+bE6ERE5nYKayFk8ueEocZEhXHWWlqcuC0Ynkps8jMfXHfVTZX337KZjDAsN4pa87HOeFxcZylWT0/jn1pIB01IIna2g+0sbWLanjLomzVwVkYFPQU3kDGpOtvLW7jJunpl1xnFc3Rlj+NicHLYdq+VgeaOfKuy95rYOXt15gismpxEVdv4lFG+bnU19c/uAaCmEzuf76rPbuOLXK/n04/lc9It3eGX7cafLEhHpFwU1kTN4c3cp7W7LjdMze3T+dVPTcRl4OYCDwTv7ymlobudDM3r2TPNyE8mKj+ClbYH7TF2stXzlmW28uO04X7x4NE/cfQG5ScP42nPb2Hy02unyRET6TEFN5Axe3XmCnMRIJmfG9Oj8lJhw5uYm8sr24wG7AO6L20pIjg5j/qikHp1vjOGaKemsOVhJbVOrj6vrn5e2HeeN3aV868rxfP3ycSwck8xf77qAjLgIvvDkVk61DpzuWxGR7hTURE5T1djC2kNVXDs1/ZyTCE53/bQMDleeZFdJ4M2UPNXawYoDFVw1OY2gc0wiON3VU9Jpd1ve2lPmw+r652RLO//9rz3MGB7HPYty3zseGxnCz2+ZRml9M0+sP+JcgSIi/aCgJnKa5fvK6XDb804iON0Vk9JwGVi6p9RHlfXd6oOVNLe5z7rMyNlMzYolKz6C1wN4nNrTG4uoPtnK966Z+IEQesHIBBaOSeJPKwoH1KLEIiJdFNRETvPOvnLSYsKZlNGzbs8u8cNCyctJYOnech9V1ndL95QSHRbMnJGJvbrOGMPlE9NYc6iKptbACzot7R38eVUh83ITmZUTf8ZzvnLpGKpPtg6IsXYiIqdTUBPpprXdzaqCSpaMT+lVt2eXSyemsPdEPSW1p3xQXd+43Za395WzZHwKocG9/yd/8fgUWtvdrDlY5YPq+ufN3WWU1bdw7+JRZz1n5vB4xqZG8ffNA29PVhERBTWRbjYdqaaxpZ2Lx6f06fpLJ3R2LS4LoDFdu47XUdnY2udnumBkAsNCg3h7X+C1FP49/xiZcREsHH32CRLGGD6cl83WoloKyhr8WJ2ISP8pqIl08+7+ckKDXCwY3bsuwi65yVGMSIxkVUGFlyvru5UHOmu5cEzPZnueLjTYxcIxyby7vzygZrSW1J5i9cFKbs3LOucuCwA3zsgk2GV4YWuJn6oTEfEOvwc1Y8wjxphyY8yubseeNcZs83wcMcZs8xwfYYw51e21P/m7Xhla1h6qYmZOHJGh518Q9mwWjE5ifWE1bR1uL1bWdysPVDI5M4akqLA+32PJ+GRO1DVTEEAL+r64tQRr4eaZWec9NykqjDm5CSwNoJZOEZGecKJF7VHgyu4HrLW3WWunW2unA/8AXuj28qGu16y19/qvTBlqapta2XOivsfrjJ3NhaOTaGxpZ/uxWu8U1g8NzW1sKaph0Zjkft2n67/J2oOV3ijLK17dcYKZw+PITojs0fmXTUjlYHkjhytP+rgyERHv8XtQs9auBM64VLjpHL39YeBpvxYlAqwvrMZamDeqb92eXeaNSsSYziUxnLa+sJp2t2XR2P4FteyESIYnRLLmUGBMKCiqamLPiXquntLzJVQu9SxNEojLp4iInE2gjVFbCJRZawu6HRtpjNlqjFlhjFnoVGEy+K0vrCIiJIhpWXH9uk9cZChTM2NZEwBBbUNhFaHBLmYMj+v3veaPSmR9YRUdbufHqb2+q3NdtysmpfX4mqz4SCamx7BsT+BNihAROZtAC2of4f2taSeA4dbaGcDXgKeMMWdc3MoYc48xJt8Yk19RETgDuWXgWHuokrwR8X1awuJ0C0YnsbWolkaHF1ndcLiaGdlxhAWfe2P5npg/OomG5nZ2ldR5obL+eXN3KVMyY3vc7dnlonHJbCmq0eK3IjJ
"text/plain": [
"<Figure size 720x1440 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots(3, 1, figsize=(10,20))\n",
"ax[0].plot(time_range_smoothing[:-1], period_1_dist, label='period 1')\n",
"ax[1].plot(time_range_smoothing[:-1], period_2_dist, label='period 2')\n",
"ax[2].plot(time_range_smoothing[:-1], period_3_dist, label='period 3')\n",
"ax[0].set(xlabel='t/s', ylabel='spike count', title='1st part')\n",
"ax[1].set(xlabel='t/s', ylabel='spike count', title='2nd part')\n",
"ax[2].set(xlabel='t/s', ylabel='spike count', title='3rd part')\n",
"ax[0].eventplot([0.2], linelengths=0.8)\n",
"ax[1].eventplot([0.2], linelengths=0.8)\n",
"ax[2].eventplot([0.2], linelengths=0.8)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"100"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(time_range_smoothing).index(0.2)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.2 0.162 0.194\n"
]
}
],
"source": [
"max_p_1 = time_range_smoothing[np.argmax(period_1_dist[:120])]\n",
"max_p_2 = time_range_smoothing[np.argmax(period_2_dist[:100])]\n",
"max_p_3 = time_range_smoothing[np.argmax(period_3_dist[:120])]\n",
"delta_2 = max_p_1 - max_p_2\n",
"delta_3 = max_p_1 - max_p_3\n",
"print(max_p_1, max_p_2, max_p_3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we'll fix the times"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"t_p1, t_p2 = stim['stim_offtime'][p1], stim['stim_offtime'][p2]\n",
"fix_time = lambda t: t - delta_2 * ((t < t_p2) & (t >= t_p1)) - delta_3 * ((t >= t_p2))"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 2.5839\n",
"1 2.7028\n",
"2 2.7863\n",
"3 2.8699\n",
"4 2.9534\n",
" ... \n",
"19990 1671.6389\n",
"19991 1671.7224\n",
"19992 1671.8059\n",
"19993 1671.8894\n",
"19994 1671.9730\n",
"Name: stim_offtime, Length: 19995, dtype: float64"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fix_time(stim['stim_offtime'][:-subseq_trials])"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/lib/python3.10/site-packages/pandas/core/roperator.py:13: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n",
" return right - left\n"
]
}
],
"source": [
"subseq_spike_times_locked_2 = {}\n",
"subseq_spike_times_locked_2['ontime'] = [subseq_spike_times[unit_id] - fix_time(stim['stim_ontime'][:-subseq_trials]) for unit_id in range(num_unit)]\n",
"subseq_spike_times_locked_2['offtime'] = [subseq_spike_times[unit_id] - fix_time(stim['stim_offtime'][:-subseq_trials]) for unit_id in range(num_unit)]"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJ8AAAJsCAYAAABTWwL8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAADS4klEQVR4nOzdebwdRZ3//3eRAAFMWAWCGKOIIIugoLgbRBFXnBkHdEbHfRl1dh3FNSAO6Oj81HFU/LqA4z464wYIgiCiQTYFJIKyRYEosplACJBQvz/u6dC3092n+5yupatfz8eDB7lnrdO3z+d2fepTVcZaKwAAAAAAAMCFTUI3AAAAAAAAAOki+QQAAAAAAABnSD4BAAAAAADAGZJPAAAAAAAAcIbkEwAAAAAAAJwh+QQAAAAAAABnSD4BAABExhjzKWPMu0O3AwAwHeI5MMNYa0O3AQAAABWMMUskfdFau2vNYw6W9B5Jj5F0m7V2sZfGAQAaaxjP/0nS30naQdIdkr4m6a3W2nU+2gi4QuUTAABA/90p6XOS3hq6IQCAqXxH0mOstQsk7SNpP0l/H7ZJwPRIPgEAADhgjLHGmIfnfj7RGHPs6N9LjDHXG2P+xRhzkzFmpTHmlcXHGmO2knSqpF2MMXeM/tul+F7W2vOttf8t6RoPHw0ABsVzPL/aWnt79nRJ90l6ePFxQN+QfAIAAAhjZ0lbS3qQpFdL+i9jzLb5B1hr75T0bEk3WmsfMPrvRv9NBQDU6DSeG2P+yhizStLNmql8OsFp6wEPSD4BAACEca+kY6y191prT9HM2h57BG4TAKC9TuO5tfbLo2l3j5D0KUl/6KaZQDgknwAAAMK4pbCA7BpJDwjVGADAxJzEc2vtbyRdLukT074WEBrJJwAAADfWSNoy9/POE74OWxMDQFgh4/lcSbtN+H5ANEg+AQAAuPELSX9ljJljjDlM0tMmfJ0/SNreGLN11QOMMZsYY+ZJ2nTmRzPPGLPZhO8HAJjtF/IXz19jjNlx9O+9JB0l6cwJ3w+IBsknAAAAN/5B0vMl3S7pryV9a5IXsdZeIekrkq4xxtxetjuSpKdKukvSKZIWjf59+iTvBwDYiM94/iRJlxlj7tRMTD9F0jsmeT8gJsZaKrkBAAAAAADgBpVPAAAAAAAAcIbkEwAAAAAAAJwh+QQAAAAAAABnSD4BAAAAAADAGZJPAAAAAAAAcGZu6Ab4tsMOO9jFixeHbgYAYErXXXediOcA0H/EcwBIw0UXXXSztfaBZfcNLvm0ePFiXXjhhaGbAQCY0oEHHkg8B4AEEM8BIA3GmBVV9zHtDgAAAAAAAM6QfAIAAAAAAIAzJJ8AAAAAAADgDMknAAAAAAAAOEPyCQAAAAAAAM6QfAIAAAAAAIAzJJ8AAAAAAADgDMknAAAAAAAAOEPyCQAAAAAAAM6QfAIAAAAAAIAzJJ8AAAAAAADgDMknAAAAAAAAOEPyCQAAAAAAAM6QfAIAAAAAAIAzJJ8AAAAAAADgDMknAAAAAAAAOEPyCQAAAAAAAM6QfAIAAAAAAIAzJJ8AAAAAAADgTO+TT8aYw4wxVxpjrjLGvD10ewAAAAAAAHC/XiefjDFzJP2XpGdL2kvSS4wxe4VtFQAAAAAAADJzQzdgSo+TdJW19hpJMsZ8VdLhkpYHbRWisuaedZIkIzPzfzP7/uzn4v1mw/2m8PP9twEAAAAAgHp9Tz49SNLvcj9fL+mgQG1BpA489gytuWe90/dokrCa+Xn2A03JfeNeS1X3m5nbNjFGRz3nkXrRAbtO96EAAAAAAOhA35NPjRhjXifpdZK0aNGiwK2Bb/9y6B66d/19kiRrZ26zsrN+zlhrC4+rfo69/0mzfs4/vvjY4mtpo/vvf4+q51S2efTzV8//nS67/naST0AAR56wTJL0tdc/ofT+fZeeJkm6bOmzOn3f7HWLun6fMrsddbIk6erjntvp6y5++8zrXnf8czf8O3Pd8W7ey9XrF98j/5ny71V2W5+U/c6yz1J1jLs8f1ydi0X7Lj1Nq9fOVFXPnzdzKb167TrNnzd3w3fO1Xc9k8WazNde/4Sx8Wfoqo5P/vZxj8n4PMauzyVfymJA8bbsdlfvPclrVz23KsaNi3l91eYYFmNx/ueqOD1p/C4+r3g9NMn3Jv8aWWzP/i1pVqx3KcWYbmyxJ9sjxpgnSFpqrX3W6OejJMlae1zVcw488EB74YUXemoh4N/+x5yuw/fbRUcfvk/opgBOHXjggYolnh95wjItX7lKey1c0PlFwrgLKdcdk+zCrorLpFMoTdtQ97hJP0cMn39SIdtePE/rOjldyZJQWcdEcpsgyCdAsniT6XvnJKZ4nmmSrHKpLLbvdtTJWm+lOWb2eV13rpfdVxXXy5IF05o2nk4bV+qS4k3eo88x2bVpEmxNz7G689d1nE8l8eubMeYia+2Bpff1PPk0V9KvJR0i6QZJF0j6K2vt5VXPIfmEVN13n9VHzvi1PvbDqzbc9pv3P1ubzun1vgJAJR+dlUlGu5uMonehruM76QWTr8qRoq46HV11Enx2NspG/vO6aMO4EXofXFcB5DvlGR/nse/OSVkCqu+JJ6m7eD5NzK2L3cX7LrzuVm25eXn1QxfnxLhq1lCxehpNKiOr4kKb+6d9rb7x9dnrqpEnfU2U83Ud6UqyySdJMsY8R9JHJM2R9Dlr7fvrHk/yCak64lPLdP51t8667dgX7qOXPv4hgVoEuBXjSDkAoD3iOQCkoS751Ps1n6y1p0g6JXQ7gNBe+aTFs5JPczcx+uuDWOMM8MXn6FTZmjOS26l3IapKfAhZFVS3BkqX719VdZRaBcA4XVYp+ax4qqrCyfRpRBztFc81l1VPvqYzuZzmVreeXialmFdXPdv1moJtpjDOKWwMXpzSWbx9nEnOx7o43eV9ba//xlVWtnmtvul95VNbVD4hdaz5hKFgpBwA0kA8B4A0JF35BADApFytDxJal1UZ+VHKsoVuuzS0Spw+GjfaXXafa3U7K3Vt3Her6XcvtpgBAKH1cS0ztEPlE5CIW++8R8/56I/1+1VrJUnnvPVgLdp+y8CtAtxhpBwA0kA8B4A0UPkEDMBXL/jthsSTJH330hv1poMfHrBFwDAMoYLBx2jkEKueXH/m1I7puPOQUXO45ireN62Ya3uO+1rDqa3UYlMsUjquxbWhMjGcv5gclU9AIqy1Wnb1Lfqrz/xMS/Z4oE585eNCNwlwipFyd0J2UmK6eHa5+HcMny8Goc61NlNTswX+58+bu+HxPhccHwLieXiuvot1i32Pm8bbpzjZxzZPo6+fN4vdmcuWPmvWbcVYj/bqKp9IPgGJYcFxDEWozsq4naZCVUK56gzHNFred6F3XOprZ2GcWKs7unLkCcu0fOUq7bVwQbIVlr7jedsdBIdQ4RqrVOMWJpdanM9ivKQk4jzJpxyST0jZ+vusdnvHKdr3QVvrw0fsp0fsND90kwBnXHRW2nQwhtAZKbvA87H9dobOBoakbvvtts/tGyqfwkitEz80XSTmJvm7S0IQdUg+5ZB8QsqKf0C+8YYn6MDF2wVqDeBW6M7KuJHyrjC9p1yoi+5J2xLj9JJUphUW1wZx2ZEO8X2cJinVF6HjeZUUj3Wq8rFn0thejF9l8azstUnGuEOCtH9IPuWQfELKjvjUMp1/3a0bfr506aFaMG/TgC0C3Im1s4LJhLh4b9LRcPWemRQ7K/nPmNrnyyefyhJRXSSnhpjwiDmeV/0+fCUi8+8zSUc8VOedhAxS4+o7n9oAA8mnHJJPSB1rPmEoYuis+Kp+qlN1MdTVRdJuR52s9VaaY/ysqeM7OVN8P1/vi/g0/c4UF6zN+KqG6nvHpEwM8Rx+kJQKZ9q/r65+d5NeV3R9PeIiuVR1ndgkjvc11pN8yiH5hNSRfMJQxN5Z6fqiwVWVRRN1F3hdXvyVJYL6OKWh6VSNGPTt2OaVJUbzP/ddfqHxTN86IU3FEs9Ddvb6OMW6Kq7VTYErPrbv2sbQusd3+VopKF5f5GN8po+xvpiQKup7nCf5lEPyCam65o936Okf/tG
"text/plain": [
"<Figure size 1440x720 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"unit_id = 1\n",
"\n",
"fig, ax = plt.subplots(1,3, figsize=(20,10))\n",
"ax[0].plot(np.diff(stim['stim_ontime'], n=2), np.arange(20000-2))\n",
"ax[0].invert_yaxis()\n",
"ax[0].set_xlabel('$\\Delta^2[t_{on}]=\\Delta$ trial duration / s', size=20)\n",
"ax[0].set(ylabel='trials')\n",
"ax[1].eventplot(subseq_spike_times_locked_2['ontime'][unit_id], lineoffsets=1, linelengths=0.8)\n",
"ax[1].set(title='unit %d'%unit_id, yticks=[], xlabel='t/s (locked to trial onsets)')\n",
"ax[1].invert_yaxis()\n",
"ax[2].eventplot(subseq_spike_times_locked_2['ontime'][unit_id_2], lineoffsets=1, linelengths=0.8)\n",
"ax[2].set(title='unit %d'%(unit_id_2), yticks=[], xlabel='t/s (locked to trial ends)')\n",
"ax[2].invert_yaxis()\n",
"plt.subplots_adjust(wspace=0)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"s = np.array([np.array(list(map(fix_time, spike_times[unit_id]))) for unit_id in range(len(spike_times))], dtype=object)//dt\n",
"B_spike_fixed = []\n",
"for unit_id in range(num_unit):\n",
" B_spike_fixed.append(sparse.coo_matrix((np.ones(len(s[unit_id])), (np.zeros(len(s[unit_id]), dtype=int), np.int0(s[unit_id]))), shape=(1, M)))"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"from copy import deepcopy\n",
"B_stim_original = deepcopy(B_stim)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"B_stim = {}\n",
"for key in key_list:\n",
" B_stim[key] = []\n",
" for stim_id, trials in enumerate(stim_id_trial[key]):\n",
" B_stim[key].append([])\n",
" s = []\n",
" for trial_id in trials:\n",
" t_on, t_off = fix_time(stim['stim_ontime'][trial_id]), fix_time(stim['stim_offtime'][trial_id])\n",
" s += list(np.arange(int(t_on//dt), int(t_off//dt)))\n",
"\n",
" B_stim[key][stim_id] = sparse.coo_matrix((np.ones(len(s)), (np.zeros(len(s), dtype=int), s)), shape=(1, M))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Calculate some matrices"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"get_trial_index = lambda t: fix_time(stim['stim_ontime'][t])//dt"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"B_spike_smooth = list()\n",
"for unit_id in range(len(B_spike)):\n",
" B_spike_smooth.append(scipy.ndimage.gaussian_filter(B_spike[unit_id].toarray()[0], sigma=50))\n",
"B_spike_smooth = np.array(B_spike_smooth)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x7f1b6ae5dcc0>]"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABS2UlEQVR4nO29eZxkZ3nf+31rX3vfZu8ZzUij0YoYLUhgYwgYcEAxBlvg6xDbN8R2+NwbO3ECjq9jE998jG9snASubRJzg1cwYGLZgGVACIMkJI3WmZE0mn3p6Z7eu7r27b1/nPOerq46VXWqpraufr+fz3ymuupM13t6qp/znN/7PL9HSCnRaDQaTf/i6vYCNBqNRtNedKDXaDSaPkcHeo1Go+lzdKDXaDSaPkcHeo1Go+lzPN1eQDljY2Nyenq628vQaDSaLcWzzz67KKUct3ut5wL99PQ0x44d6/YyNBqNZkshhLhY7TUt3Wg0Gk2fowO9RqPR9Dk60Gs0Gk2fowO9RqPR9Dk60Gs0Gk2fowO9RqPR9Dk60Gs0Gk2fowO9RqPRdJjvvLbAsxdXOvZ+PdcwpdFoNP1MIpPnQ599GoCz/+lduF2i7e+pM3qNRqPpIK/OxazH5xbiHXlPHeg1Go2mg7w6t249vriU7Mh76kCv0Wg0HeTqasp6PFPyuJ3oQK/RaDQdZD6WYSLqx+dxbQr67URvxmo0Gk0HWYhnmBwI4HW7WIhnOvKeOtBrNBpNB5mPZZgaDFCUktVkriPvqaUbjUaj6SALcUO6GQn7WE5kO/KejgK9EOIdQohTQogzQoiP2rzuF0J8wXz9KSHEtPm8VwjxOSHEcSHEK0KIj7V4/RqNRrNlKBYlS/EMYxE/QyEfq8keCfRCCDfwaeCdwBHgA0KII2WH/SywIqU8CHwS+IT5/PsBv5TyNuD1wL9QFwGNRqPZbsSzeYoShkJehkNeVnpIurkHOCOlPCelzAKfBx4sO+ZB4HPm4y8BbxVCCEACYSGEBwgCWSCGRqPRbEPW03kAogEPQyEfa6kchaJs+/s6CfS7gMslX18xn7M9RkqZB9aAUYygnwBmgUvAf5ZSLpe/gRDiw0KIY0KIYwsLCw2fhEaj0WwFYikjgx8IeIn6jVqYRDbf9vdt92bsPUAB2AnsB/61EOJA+UFSys9IKY9KKY+Oj9sOMddoNJotjwr00YCXSMAI9PF0bwT6GWBPyde7zedsjzFlmkFgCfgg8HdSypyUch54HDh6vYvWaDSarYiSbgaCHiIqo8/0RqB/BjgkhNgvhPABDwEPlx3zMPAh8/H7gEellBJDrnkLgBAiDNwHvNqKhWs0Gs1WI5auzOjXeyHQm5r7R4BHgFeAv5RSnhRCfFwI8R7zsD8CRoUQZ4BfAlQJ5qeBiBDiJMYF4/+TUr7U6pPQaDSarYCV0Qc2MvpOSDeOOmOllF8Dvlb23K+VPE5jlFKW/7u43fMajUazHdmk0feYdKPRaDSaFhBL5wh4Xfg8LivQ94R0o9FoNJrWsJ7OMxDwAnRUutGBXqPRaDpELJ0jam7ChrV0o9FoNP3HejpP1MzofR5DwonrQK/RaDT9QypbIORzW1+HfW6S2ULb31cHeo1Go+kQybJAH/S6SeV0oNdoNJq+IZ0rEPBuBPqAz01KZ/QajUbTP6RyBYIlgT7k0xm9RqPR9BWpXIFguXSjM3qNRqPpH5LZzYE+oDV6jUaj6R8KRUk2X6yUbnRGr9FoNP1B2szcSwO9rrrRaDSaPkIF9E0avd6M1Wg0mv5BSTSbM3qPlm40Go2mX7DP6F2kcgWMOU3tQwd6TQXr6RxPnl3q9jI0mr7CPqN3UyhKcgUd6DUd5qNfPs4H/vv3efbiSreXotH0DSm7zVif4WDZbvlGB3pNBd985RoAT5xZ7PJKNJr+QQX6QFnDVOlr7UIHes0mEpk8mXwRgLML8S6vZvuxnMjy8ItXKRTbeyuv6Twqaw+VafTQ/kDvaGasZvtweSVpPb64nKxxpKYd/PuvHOfrJ+bI5Aq8/+iebi9H00KqVd0AJLPt9aTXGb1mE5eXUwDcvGOAKyupLq9meyGl5B9eWwDgsVMLXV6NptXYa/TG47SWbjSdZCmeAeDmHVGWE1mKPSYhfP/cEsuJbLeX0RZmVlMkzKzvhcur3V2MpuWka2j07R4+ogO9ZhMryRwAhyaiFIqSlWTvBNUTM2s89Jnv84tfeKHbS2kLp68ZeyI/eOM4M6uptmd5ms6StJFuAl4jBGdyxba+tw70mk2sJLMEvC72jAQBWIz3TqB/9NV5AL7z2kJfblbOrBpS2RsPjgFwWe+R9BWpXAGvW+B1b4RdNYQkndcZvaaDrCSyDId8jEX8ACyaUk4vUFoFdKkPg+D8egaXgNftHQL68xy3M6ns5ulSAH6Pzug1XWAl2buB/txCgojfqFK4sJTo8mpaz3wszWjEz/RYGNAZfb+RLpsuBTqj13SJ5USW4bCX4ZAXgFVTs+8FLiwmuO/AKADX1tJdXk3rmV/PMBH1MxLy4XEJ5td75yKruX7KB4ODzug1XWI1mWMo5GMgaAT6tVRvBPpUtsB6Js/tuwcRAuZi/Rjo00xE/bhcgrGIXwf6PiOVq5RudEav6QqxdJ6BgBev20XY5ybWI4FeSUhTAwFGw36u9WOgj2WYiAYAmBjws6ADfV+RLpsXC+Bz64xe0wUSmTwRv/FhHAh6eyajXzJr58eiPiai/RcEpTRKWUciPgAmojqj7zdS2UqN3uUS+DwundFrOkehKEnlCoTNDc/BHgr0i2bQGw37GQp5e2rvoBWkcgVyBcmgKZmNR/0srPffXct2xk6jB0On1xm9pmMkTL8NVdnSWxm9EejHon6GQz5We2RdrSKWMn72G4E+wFIiS77Q3gCg6RxpG40eDJ1eGQm2Cx3oNRaJjBFsejKjNxu3RsM+BkNeVnuoY7cVqJ/zQMAI9CMhL1L2zma45vpJ2ZRXgsrotXSj6RDlgX4g4GU93V5XPacsxjNE/B4CXjdDQUO6aff4tU4SS5uBPmj87IfDhla/0mcSVTmFouQTf/cqj2+D2Qcpm81YMAO9zug1nSKeMbIKtRnbSxn9SiLLiBn8hkJe8kVpGYD1A2tmQFfSzVDIONd+u3Mp57unF/j9x87y4T8+1u2ltJ1k1j7QB7xu7V6p6RxWRu/bkG7imXxP6MSxdN7KdlUQXOkjF8ty6UY1rPV7Rv/MhWUAEtlCX5bMKgpFSTZfrC7d6Ixe0yniZqCPBIyAGjX/Vs93k1gqZwXBoWDvde1eL0q6URn98DbJ6E/MxKzH/TzRLG3jRa/QGb2mo6iMXlXdqIDfCzr9ejpvXXiiZsBfz/RPoFcZvTrHwR60oGgHV1aS3L57EICLS/3r7WMNHelljV4I8Q4hxCkhxBkhxEdtXvcLIb5gvv6UEGK65LXbhRBPCiFOCiGOCyECLVz/Ji4s9p/RVSeJl23GRs2/E20ec+aEWHojo1fBMJHpH40+lsoT8XvwmJ2SUb8Hj0v01DyAViOlZGY1xdF9I3hcoq9N3OzGCCp6IqMXQriBTwPvBI4AHxBCHCk77GeBFSnlQeCTwCfMf+sB/hT4OSnlLcCbgbakKE+dW+Itv/MYf/3CTDu+/bYgXpbRq4Af74GMPpbKWZm8ta4+y+gHAhsjnIUQDIW8fa3RLyWypHNF9o4EGYv4e8optdVshYz+HuCMlPKclDILfB54sOyYB4HPmY+/BLxVCCGAtwMvSSlfBJBSLkkp23LpumPPEAcnInzuiQvt+PbbgkQmj9slLEc9S7rpskafLxRJZAvWZmzYrAqK91FGv57euJAphkK+vtboZ8yZxLuGQ4xFfX1na1FKvYw+0wMWCLuAyyVfXzGfsz1GSpkH1oBR4EZACiEeEUI8J4T4t3ZvIIT4sBDimBDi2MJCc0ORA143bzk8yfGZNT2CrUkSmQJhnxvjGl0i3XQ50Ks7DRUIo37j716402gVyWzBuoAphvvQ6qEUlcGPR/2MR/wsbIeMvkrVTXqLWyB4gDcCP2n+/aNCiLeWHySl/IyU8qiU8uj4+HjTb3bbrkF
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(B_spike_smooth[0][:5000]) # ~10 trials"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Reverse correlation\n",
"\n",
"TL;DR: We find the reverse correlation matrices. When we plot them they look meh, but if we plot them smoothed, they look awesome. However, we shouldn't use this smoothing when decoding parameters because it uses our (parameter-defined) notion of distance between points."
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"B_stim_total = np.sum(B_stim['phase'])"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {},
"outputs": [],
"source": [
"R = dict()\n",
"for key in key_list:\n",
" R[key] = list()\n",
" for i in range(len(B_stim[key])):\n",
" item = []\n",
" for u in range(len(B_spike_smooth)):\n",
" item.append(B_stim[key][i].dot(np.roll(B_spike_smooth[u], 80)))\n",
" R[key].append(item)\n",
" R[key] = np.array(R[key])"
]
},
{
"cell_type": "code",
"execution_count": 104,
"metadata": {},
"outputs": [],
"source": [
"R['pair'] = R['pair'].reshape((20, 20, 40))\n",
"Rp = R['pair']"
]
},
{
"cell_type": "code",
"execution_count": 102,
"metadata": {},
"outputs": [],
"source": [
"R_pair_smoothed = np.array([scipy.ndimage.gaussian_filter(R['pair'][:, :, i], sigma=2) for i in range(40)])"
]
},
{
"cell_type": "code",
"execution_count": 103,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAOUCAYAAACyq+IgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5xcZdk+8Ove3muSTe+VBAghJITeuzSRIk1BQZFXbPhir6++4g95RQVEjUFEihRBOtJrIAkhJKT3uptke2/P74890SVkrrO7mWd3Zuf6fj75ZHfuPTPPnDnXOfNMObc55yAiIiIiIiL+JPX1AERERERERPo7TbxEREREREQ808RLRERERETEM028REREREREPNPES0RERERExDNNvERERERERDzTxCuBmdmdZva9vh6HSH+kfIn4oWyJ+KN8+aWJVxwzM2dm4/e67Idm9teuLO+c+4Jz7ifBcseZ2ZaQ2zMz+4WZ7Q7+/cLMrOf3QCR29UG+jjezl8ysysw29HjgIjGuD7J1o5ktNbMaM1tvZjf2fPQisa0P8vVVM1tnZtVmts3MbjWzlJ7fg/5NEy/pjmsAnAvgYAAHAfgEgGv7ckAi/UgdgLkA9KRQJLoMwBUACgGcBuB6M7u4b4ck0m88DmCGcy4PwDR0PEf8ct8OKXZp4tWP7Xmlwsy+bmZlZrbdzD7bqT7PzH5qZtkAngYw1Mxqg39D93GVVwK4xTm3xTm3FcAtAD7TK3dGJMZEO1/OuXecc/cAWNeLd0Mk5njI1s3OuUXOuVbn3EoAjwE4svfukUjs8JCvtc65yj2LA2gHMH7vv5MOmnj1f4MB5AMYBuBqAL8zs8LOf+CcqwNwOoBtzrmc4N+2fVzXVADvd/r9/eAykUQVzXyJyH94yVbw8fijASzzM2yRuBDVfJnZp82sGsAudLzj9Xuvo49jmnj1fy0Afuyca3HOPQWgFsCkHl5XDoCqTr9XAcjR97wkgUUzXyLyH76y9UN0PPf5cxSuSyReRTVfzrm/BR81nAjgTgCl0Rlm/6OJV3xrA5C612Wp6AjUHrudc62dfq9HxwSqJ2oB5HX6PQ9ArXPO9fD6RGJZb+dLJFH0SbbM7Hp0fNfrTOdc0/5cl0gM67Njl3NuNTreTb59f6+rv9LEK75tAjB6r8vGANjYg+vqyuRpGTreQt7jYOjjGtJ/9Xa+RBJFr2fLzK4CcBOAE51z9CxtInGur49dKQDG9WC5hKCJV3x7AMB3zWy4mSWZ2UnoONPgQz24rlIAxWaWT/7mLwC+ZmbDgi9Yfh3AvB7clkg86NV8BbeRgY5XJs3MMswsrUcjF4ltvZ2tSwH8DMDJzjmdvEb6u97O1+fMbFDw8wEAvgXghR7cVkLQxCu+/RjAmwBeB1AB4GYAlzrnlnb3ipxzKwDcB2CdmVVGOKvh7wH8E8AHAJYCeBL6AqX0X72dr2MANAB4CsDI4Ofnejh2kVjW29n6KYBiAO92OjvbnT0fvkhM6+18HQngAzOrQ8fx6ykA3+7p4Ps709dzRERERERE/NI7XiIiIiIiIp5p4iUiIiIiIuKZJl4iIiIiIiKeaeIlIiIiIiLiWUpfD2B/pFmGy7DsiPWWsel0eeeMX39KK623tCXTenszrwNAWmZL6N8wrdV798jbawwhJ6NOreF1a+UnX7GQk7M0FfF1nFHWRuuNg8PXYUoNv43WTL58UjOvu1w+xqa123c55wbya4k/afmZLmNwXsR6Vgrfdisa+IpPS+Hrta0yZNvuwt4rvTJk+xrAt6+wbQM5/PrD9jGFGfW0XlHF+1kW5NXRuhnPZ3lNeL/M3OwGWq+t5o9zTh5fvtXx1/+qVu7sl/lKzsl2KUVFEevplfyxa0/h21ZYPlIa2mm9qSD8dVnjmz9S6/h9aM7l9wEpfPmMrTyg7dn8ABh2fGsaxMeXUh1y7Mnj6xgAUiv5erZ2Psb8YfwgvrM68j68tbwcbXV1IQ9C/EnOynapBZGzVVTI11nNVr5fbB/IN/z2Wh6+5LDjCoCWkOctySHtv0N2/aH1llz+BwNz+DrcVRl5uwOAZH5YQOGQalrfWZPLrwAAQo6/2dmNtN66ie8/mgbw62/etHWfx664nnhlWDYOTz0tYn37r3j/tqZmfvdHDyin9W1khwYAdetZS6wOI6dtp/WkkHTseGE4rTcM4zuIoS/RMtKq+OQzpYFf/+rL+YY75TdVtL7im5En1nsM/BefYO86hK/DnI38wNdyNN8BrPzkD3vSlDDmZQzOw2F3XhqxPqNoM13+oaWH0PqIkgpar/rHvs5a+x9NxbQMABj1KM/wymt4RrM384mZm8O33+aQF18umLSY1h965khaP+fUt2k9NeSZ8QOvHEHrAHDM4bxH+tvPHEjrR53+Pq2XNvID6JPH/LZf5iulqAhD/vuGiPWxj/AXNuoHhTwpKOBPCopW8CcdG87MoHUASA150avkHf4Mc8sJ/MWV1mK+DqZ8ZxOt1x86itbTKvn41nyB53fAC/zYU34KX8cAMPhR/jgmN/Lj1xk/5wfxPz59UsTall/fSpeNV6kFRRh17dci1i8+/2W6/IvfPYrWG77Aj111b/DXifLXhU/Id07n2cpfy5cPe9EwpYlvV9tP5MeO6+a8SOt/ePwUWi9eym///G8/T+u3v3oirQNAUhN/bnfYrFW0XvmVYbS+8mo+O9507Tf3eezy9lFDM5trZmVmtrTTZQ+Y2eLg3wYzWxxcPtrMGjrV1F9DhFC+RPxRvkT8ULYk0fl8x2segN8C+MueC5xzF+352cxuAdD55eK1zrnpHscj0p/Mg/Il4ss8KF8iPsyDsiUJzNvEyzn3qpmN3lfNzAzAhQBO8HX7Iv2Z8iXij/Il4oeyJYmur85qeDSAUufc6k6XjTGz98zsFTM7OtKCZnaNmS0wswUtLvzz0yIJKCr5aq4K+farSGKKSr7aamv9j1QkvkQnW/X8pEMifamvTq5xCYD7Ov2+HcBI59xuMzsUwD/MbKpz7mNnNXDO3QXgLgDISyoOOS+LSEKKTr4mlShfIh8XlXyljxyhfIl8VFSylTFU2ZLY1evveJlZCoDzATyw5zLnXJNzbnfw80IAawFM7O2xicQ75UvEH+VLxA9lSxJFX7zjdRKAFc65LXsuMLOBAMqdc21mNhbABADrwq4od0objnkg8umcH7qjgC4/ZD0/VfrKc/mpJK2Zn+6zK80xGucOofX6wSGnOp/F31JPDuljsPUUfjpftPPT6aaV81PhZm3kt7/mu/yUxcPvD99Es27gpxRuDDnt/8FzttL68t2DQ8cQQ6KWr+bWFGzcWRixvvXlEXR5y+enzN39AT9dfMtg/qJla3b4i5rrPxW5lwsAjJvKT4lfMpP3Knlj6QQ+gJAhPrSCn3L/pJPeo/WH35jFbyDkpbXMsvDX3g7MCcnHrBJaf+2Zg2m9LT2uXpyOWr7ggCRyDNk5ne8bqyfw41fuWr7v3Hwiv/4hb4Y06QKwewq/jfIp/PiQE9IoYOBj/HTy5X/m+/aKhXx8LSP4PiprGT9dfM1ZfP+Q+3J4r6HSWXz7bxvEzwt+1/v81OfteeRxTIqp7EUvWwa45Mj37d4nj6WLZ47lz1ta3uKni88o5+u1enT4fvcn591H6z9achatN5aHtIMIeW6IkDPe/+lD3opk4IxSWt+ew9fhPWtCjm1p4afkt3y+/5i/jLecSrqB72MLcnmroUjPTH2eTv4+AG8BmGRmW8zs6qB0MT76VjIAHANgSXAK0YcAfME5xxvwiCQw5UvEH+VLxA9lSxKdz7MaXhLh8s/s47KHATzsaywi/Y3yJeKP8iXih7Ilia6vzmooIiIiIiKSMDTxEhERERER8UwTLxEREREREc808RIREREREfFMEy8RERERERHP+qKPV9TsrsrFvCdPiFhPLeB9CqpG87ufVM97MWRt5/PWhkHhPTJ2Tef1cX/nfQLWDeR9QjJ383Vw1VVP0fqf/nwGrTcM4b0USt7hvWBS3uWPQcWk8E20/NlRtJ525G5a3/at8bS+67IEfX2iIQkpS3MilvOOKKOLjy/
"text/plain": [
"<Figure size 864x936 with 16 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, axs = plt.subplots(4, 4, figsize=(12, 13))\n",
"fig.tight_layout(w_pad=2)\n",
"for i, ax in enumerate(axs.flatten()):\n",
" ax.imshow(R['pair'][:, :, i], extent=(0, 360, 0, 180), aspect=2)\n",
" ax.set(xlabel=\"phase\", ylabel=\"orientation\", title=f\"Unit {i}\")"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAOUCAYAAACyq+IgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAADnrklEQVR4nOz9eZxtd13n+78/e6r5TDknycnESSAECBciRJCr2LR2t4jYgj8vDY2KikYUrvZtmxZUxIttd+u96q/tq2D8QQdtRZChoW1sRUTQK4NhCmEIJCGQhJNzkjPWvKfP74/aBysnZ38+u4Zv1a7ar+fjUY+qWt+99v7utdZnrfXdw3qbuwsAAAAAUE5luzsAAAAAALsdAy8AAAAAKIyBFwAAAAAUxsALAAAAAApj4AUAAAAAhTHwAgAAAIDCGHiNMDN7g5m9Zrv7AexG1BdQBrUFlEN9lcXAawczMzezx5w37ZfM7L8OMr+7v8zdf7k337PM7L7k8czMftXMTvR+ftXMbP3PABhe21Bf/9jMPmBmZ8zsnnV3HBhy21BbrzSz281s1sy+bGavXH/vgeG2DfX1f5jZ3WZ21sy+Zma/aWa19T+D3Y2BF9biJknPk/RkSU+S9N2Sfnw7OwTsIvOS3iSJk0Jgc5mkH5S0X9KzJb3CzF64vV0Cdo33SHqKu++R9EStnCP+1PZ2aXgx8NrFzr1SYWY/Y2bHzeyomf3wqvZbzOzfmdmUpD+TdJmZzfV+LrvAXb5E0q+7+33ufr+kX5f0Q1vyZIAhs9n15e4fc/c/kHT3Fj4NYOgUqK1fc/dPuHvb3e+Q9G5J37x1zwgYHgXq6y53P31udkldSY85/3ZYwcBr97tU0l5Jl0t6qaTfNrP9q2/g7vOSvlPS19x9uvfztQvc1/WSPr3q/0/3pgGjajPrC8A/KFJbvY/HP1PSZ8t0G9gRNrW+zOxfmtlZSQ9p5R2v3y3a+x2Mgdfu15L0Ondvuft7Jc1Jum6d9zUt6cyq/89ImuZ7Xhhhm1lfAP5Bqdr6Ja2c+/yXTbgvYKfa1Ppy9z/qfdTwsZLeIOnY5nRz92HgtbN1JNXPm1bXSkGdc8Ld26v+X9DKAGo95iTtWfX/Hklz7u7rvD9gmG11fQGjYltqy8xeoZXven2Xuy9v5L6AIbZtxy53/5JW3k3+nY3e127FwGtn+6qkI+dNu1rSV9ZxX4MMnj6rlbeQz3my+LgGdq+tri9gVGx5bZnZj0h6laRvd/fwKm3ADrfdx66apEevY76RwMBrZ3urpF8wsyvMrGJm/0QrVxp8+zru65iki8xsb3Cb35f0r83s8t4XLH9G0i3reCxgJ9jS+uo9xrhWXpk0Mxs3s8a6eg4Mt62urRdL+veS/qm7c/Ea7HZbXV8/amYX9/5+gqRXS3r/Oh5rJDDw2tleJ+nvJP2tpFOSfk3Si9399rXekbt/QdJbJN1tZqf7XNXwdyX9d0mfkXS7pP8hvkCJ3Wur6+tbJS1Keq+kq3p//8U6+w4Ms62urX8n6SJJf7/q6mxvWH/3gaG21fX1zZI+Y2bzWjl+vVfSz62387ud8fUcAAAAACiLd7wAAAAAoDAGXgAAAABQGAMvAAAAACiMgRcAAAAAFFbb7g5sRKM26RP1/lc/74zHT689mTzAeDd5/HbYXrH8wiXtbjz2bXeqYbu34vkrrbBZ1aWsPX6OvpxkUCaLwBrx1bI7U+dnAD5SK4n8m5qKn+TF9bNh+7RZ2P7x25YfcvdDcS92ntqeSa9fvK9ve7edbHvL8XKrLcQbR2WhGbZ7O942Jclqcf10J8bC9vZU/Bx8qhO2HxhbCNv3V+P28WTby7Q93octD/Da22I3rtHlblyjy914HXQ87sPsF4/vyvqqzkx57dC+/jfI6ivZt2ft1onrz+JNe+U2+U1i2cW9ukkfk3Yl9ePVuL1bj9dBNzmDytolyRvxcxgfj1dkdvzaW+l///fc29JDJzsbXo3DptGY8vHx/f1vkG77ycbfiferqUq+3/VafBtPts1OI16tnYl4GUxNxud2+2vxsaumeBm2FB8Xmh4XTys5rkjSYic5NrXix7BmvIwt2ccuHb/vgseuHT3wmqjv1TMe/SN922evCwpP0oM3JCvu8bNh85GDJ8P2RjU/cp1YjEd/D56ORxXtByfC9sn74ue4/0txH2c+eyJs7951T9ienRzXLr8qbD/19AtdufThHvhf4/an3fjFsP1/P/yXYfs3j8fFVz1853pCCYde/eJ9esxv/Gjf9rMPTYXzT90Zn7Af+lS815r4ZLxYO8eOh+2SVN1/Udi+dMORsP3Y0+KBmT8lPun53679ZNj+gr23hu2Pq8ePnzneiQ+Od6evPkmfXb4ibP/S4iVh+1cWDoTtZ5bjfdhfftv/d1fWV+3QPl32yy/v2+6n4/qZ+Fq8b598ID6xmjgZ7/tr8/nxq5KcwGYvvFVa8QlsZSneR1SyFwaTgVdn73jYvnBpXH8Lh+Jjw9KhfEyzeGX8HK9/bJz1/BNXfCBs/67J/i88Pu077g3n3anGx/frxhv711ZtPtmuTs3FDzA7H7dnLxhM5/vdzkUzYfvSxfF+8+yj4tP7U/9LXN9Pf/KdYfv/dig+dl1UjZfhA+0oMla6txUfN+5fjs/vJekLZ+Jj05fuvzhsr3013j+MPxjX9+2/+a8veOwq9lFDM3uTmR03s9tXTXurmX2q93OPmX2qN/2ImS2uaiNfAwhQX0A51BdQBrWFUVfyHa9bJP0/kn7/3AR3/xfn/jazX5d0ZtXt73L3Gwr2B9hNbhH1BZRyi6gvoIRbRG1hhBUbeLn7h8zsyIXazMwkvUDSt5V6fGA3o76AcqgvoAxqC6Nuu65q+ExJx9z9S6umXW1mnzSzD5rZM/vNaGY3mdmtZnZrM/n+AjCiNqW+OmepL+ACNqm+ku+JAKNnc84Nm9QWhtd2XVzjRZLesur/o5KucvcTZvZUSf/NzK5390d8c93db5Z0syTtnTicXzYQGD2bUl8Tj7mM+gIeaVPqa+yay6kv4OE2pbb27LmC2sLQ2vJ3vMysJul7Jb313DR3X3b3E72/Py7pLkmP3eq+ATsd9QWUQ30BZVBbGBXb8Y7XP5H0BXf/+jVSzeyQpJPu3jGzayRdK+nu9J7cpVb/y8nWFuLLZTbOxJfjnT0RX67zq5X4cpZj9TxnqNlOMm6Sdq/HL+w098ftZx+VPH79YNg+eXhP2J5dLnj2UHzJ5LNH8tcG7KLFsP1AI/7IXCvJi3ioE8cKDJlNq69u1zQ31/9yqjYfL7csIy7L4LHx+FLO1X3x5WglSfvj27T2xM+hMx73sVGL9zGV7HraG1S1uD7qG8wBk/KcrpPNOFbg+EJ8WeRTC/F+dshsWn1VKq7xyf5ZdYudeN0uXxSvW0syIruNeN9fn8/3vdU4ak+VVrz9V5fj40OtkUR51OPnkGWVeSVehpV2PH8ty8GMD00rjzEXP4ejs3H93L54Zdh+Ze0zfdsWkpy/LbZ554ZdV3UhuGR8N37enhx7bCw+b+lmGbJ78piQpYvi/e7Cwbg25uLNQtOH48u9P2nm/rD92kYc51JXvIznPV6G1WTfMQj3DR7/si6ss4slLyf/FkkflnSdmd1nZi/tNb1QD38rWZK+VdJtvUuIvl3Sy9w9DskCRhj1BZRDfQFlUFsYdSWvaviiPtN/6ALT3iHpHaX6Auw21BdQDvUFlEFtYdRt11UNAQAAAGBkMPACAAAAgMIYeAEAAABAYQy8AAAAAKAwBl4AAAAAUNh25HhtHpes3T9Hpz4X52iNn4hzErKMn0VNhu1LU3mOV7UWZx1Uq3F7ZU8cpNKNY7Y0e2mSZfboeBnU5pK8iyBKQ5I6/WOiJEndS5KgFElXX3oibD9Qnw/bH2gPkAcVOrrB+YdUuyI/2T9ro3E6yZCaS3K6kowcn0w2jiRLRZJal8QFsLg/fg7Z9pmlhMx14vo40Y0zrOY8DgKaVL4MIp0BXnubTRbC0cV4GR89Fbc3z+aZNruRWZwD152K9+3LFtfPwnh8fGsm235tgByvWhyRqNpCkoO1mPRhMcs
"text/plain": [
"<Figure size 864x936 with 16 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, axs = plt.subplots(4, 4, figsize=(12, 13))\n",
"fig.tight_layout(w_pad=2)\n",
"for i, ax in enumerate(axs.flatten()):\n",
" ax.imshow(R_pair_smoothed[i], extent=(0, 360, 0, 180), aspect=2)\n",
" ax.set(xlabel=\"phase\", ylabel=\"orientation\", title=f\"Unit {i}\")"
]
},
{
"cell_type": "code",
"execution_count": 113,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Topological noise reduction: 100%|██████████| 100/100 [01:57<00:00, 1.18s/it]\n"
]
}
],
"source": [
"res = top_noise_reduction(pd.DataFrame(Rp.reshape((400, 40)))).to_numpy()"
]
},
{
"cell_type": "code",
"execution_count": 121,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"128.81601674915015"
]
},
"execution_count": 121,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res[0][0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Intermission: save variables to a file"
]
},
{
"cell_type": "code",
"execution_count": 132,
"metadata": {},
"outputs": [],
"source": [
"import pickle\n",
"with open('dump.pkl', 'wb') as f:\n",
" pickle.dump({k: globals()[k] for k in [\n",
" 'data_folder', 'stim_file', 'spike_times_file', 'key_symbol', \n",
" 'stim', 'num_trial', 'stim_val', 'trial_stim_id', 'key_list', 'stim_id_trial', 'num_stim', 'key', 'pair_id', 'trial_pair_id', 'pair_val', 'pair_trial_id',\n",
" 'spike_times', 'num_unit', 'num_spike', 'spike_count_rate', 'avg_firing_rate', 'firing_rate', 'stim_num_trial', 'stim_hist', 'optimal_avg_firing_rate',\n",
" 'latest_spike_time', 'dt', 'exp_time', 'B_stim', 'trials', 't_on', 't_off', 'B_spike', 'trial_range', 'units', 'orientation', 'phase', 'trial_spike_times',\n",
" 'delta_t_on', 'delta_t_off', 'subseq_trials', 'subseq_spike_times', 'subseq_spike_times_locked', 'time_range', 'unit_id_2', 'p1', 'p2', 'delta_t', 'time_range_smoothing',\n",
" 'period_1_dist', 'period_2_dist', 'period_3_dist', 'num_units', 'max_p_1', 'max_p_2', 'max_p_3', 'delta_2', 'delta_3', 't_p1', 't_p2', 'subseq_spike_times_locked_2',\n",
" 'B_spike_fixed', 'B_stim_original', 'B_spike_smooth', 'B_stim_total', 'R', 'R_pair_smoothed', 'Rp'\n",
" ]}, f)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"dict_keys(['data_folder', 'stim_file', 'spike_times_file', 'key_symbol', 'stim', 'num_trial', 'stim_val', 'trial_stim_id', 'key_list', 'stim_id_trial', 'num_stim', 'key', 'pair_id', 'trial_pair_id', 'pair_val', 'pair_trial_id', 'spike_times', 'num_unit', 'num_spike', 'spike_count_rate', 'avg_firing_rate', 'firing_rate', 'stim_num_trial', 'stim_hist', 'optimal_avg_firing_rate', 'latest_spike_time', 'dt', 'exp_time', 'B_stim', 'trials', 't_on', 't_off', 'B_spike', 'trial_range', 'units', 'orientation', 'phase', 'trial_spike_times', 'delta_t_on', 'delta_t_off', 'subseq_trials', 'subseq_spike_times', 'subseq_spike_times_locked', 'time_range', 'unit_id_2', 'p1', 'p2', 'delta_t', 'time_range_smoothing', 'period_1_dist', 'period_2_dist', 'period_3_dist', 'num_units', 'max_p_1', 'max_p_2', 'max_p_3', 'delta_2', 'delta_3', 't_p1', 't_p2', 'subseq_spike_times_locked_2', 'B_spike_fixed', 'B_stim_original', 'B_spike_smooth', 'B_stim_total', 'R', 'R_pair_smoothed', 'Rp', 'firing_rates_noise_red', 'firing_rates_flat', 'firing_rates_in_trials', 'avg_firing_rates'])\n"
]
}
],
"source": [
"file = open(\"dump.pkl\", 'rb')\n",
"data = pkl.load(file)\n",
"print(data.keys())\n",
"for key, value in data.items():\n",
" globals()[key] = value\n",
"file.close()"
]
},
{
"cell_type": "code",
"execution_count": 131,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"__name__ __doc__ __package__ __loader__ __spec__ __builtin__ __builtins__ _ih _oh _dh In Out get_ipython exit quit _ __ ___ os sys __vsc_ipynb_file__ _i _ii _iii _i1 np plt pd scipy sts pkl widgets mplot3d Axes3D sparse cm cmap_hot cmap_viridis cmap_jet _i2 data_folder stim_file spike_times_file key_symbol _i3 stim num_trial stim_val trial_stim_id key_list stim_id_trial num_stim key pair_id trial_pair_id pair_val pair_trial_id i _i4 _4 _i5 _i6 _i7 _7 _i8 spike_times active num_unit _8 _i9 num_spike _i10 files file_name file data value spike_count_rate avg_firing_rate sem_firing_rate firing_rate stim_num_trial C_r_fphi_theta theta_hist phase_hist pair_hist corr_stim_unit optimal_avg_firing_rate stim_hist stim_hist_caution _i11 max_delay tau_id_range latest_spike_time latest_stim_offtime experiment_dur dt exp_time M _i12 B_stim stim_id trials s trial_id t_on t_off B_spike unit_id _i13 sorted_spike_num cutoff_num_spike _i14 t0 t1 stim_prev_id t_prev_on t_prev_off spikes _i15 gridspec fig ax gs0 ax0 ax1 ax2 ax3 _i16 ref_trial_id past_trials future_trials trial_range units orientation phase ref_id _i17 PSSH _i18 trial_spike_times delta_t_on delta_t_off subseq_trials subseq_spike_times subseq_spike_times_locked _i19 time_range _i20 subseq_spike_times_len chain _20 _i21 unit_id_2 _i22 stim_2diffs _i23 p1 p2 delta_t time_range_smoothing period_1_dist period_2_dist period_3_dist num_units j row hist _i24 _24 _i25 _25 _i26 max_p_1 max_p_2 max_p_3 delta_2 delta_3 _i27 t_p1 t_p2 fix_time _i28 _28 _i29 subseq_spike_times_locked_2 _i30 _i31 B_spike_fixed _i32 deepcopy B_stim_original _i33 _i34 get_trial_index _i35 B_spike_smooth _i36 _36 _i37 _37 _i38 _38 _i39 _39 _i40 _40 _i41 _41 _i42 B_stim_total _i43 _i44 R _i45 item u _i46 _i47 _i48 _i49 _i50 _i51 _51 _i52 _52 _i53 _53 _i54 _54 _i55 _i56 _56 _i57 _57 _i58 _58 _i59 _59 _i60 _60 _i61 _61 _i62 _62 _i63 _63 _i64 _64 _i65 _65 _i66 _66 _i67 R_pair_smoothed _i68 axs _i69 _i70 _i71 _i72 _i73 _i74 _i75 _i76 _i77 _i78 _i79 _i80 _i81 _i82 _i83 _i84 _i85 _i86 _i87 _i88 _i89 _i90 _i91 _i92 _i93 _i94 _i95 _i96 _i97 _i98 _i99 _i100 R1 item1 _i101 _i102 _i103 _i104 Rp _i105 _i106 _i107 _i108 _i109 top_noise_reduction _i110 _i111 _i112 _i113 res _i114 _114 _i115 _115 _i116 _116 _i117 _117 _i118 _118 _i119 _i120 _120 _i121 _121 _i122 pickle _i123 f _i124 _i125 _i126 _i127 _i128 _128 _i129 _129 _i130 _130 _i131\n"
]
}
],
"source": [
"print(*globals().keys())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Forward correlation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"firing_rates_in_trials = [] # by pair, then by trial, then by neuron\n",
"firing_rates_flat = []\n",
"\n",
"for trial_ids in stim_id_trial['pair']:\n",
" row = []\n",
" for trial_id in trial_ids:\n",
" ind = round(get_trial_index(trial_id))\n",
" rr = []\n",
" for u in range(len(B_spike_smooth)):\n",
" rr.append(np.mean(B_spike_smooth[u][ind + 50:ind + 90]))\n",
" row.append(np.array(rr))\n",
" firing_rates_flat.append(np.array(rr))\n",
" firing_rates_in_trials.append(np.array(row))"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(400, (50, 40))"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"firing_rates_flat = np.array(firing_rates_flat)\n",
"len(firing_rates_in_trials), firing_rates_in_trials[0].shape"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"avg_firing_rates = np.array([np.mean(fr_pair, axis=0) for fr_pair in firing_rates_in_trials]).reshape((20, 20, 40))"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAOUCAYAAACyq+IgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hc5Zk28PtR75Zkucjdxg0wYJoNoQQCoYeSsATSICGQxqZudlM3fbNhN8mXTsiGGBJCSCihBEILJXQM2MbgbtxtyZat3qXn+0PHiTCe+0iyXmlGc/+uy5el80x5Z+bc55x3ZnQec3eIiIiIiIhIOBnDPQAREREREZGRThMvERERERGRwDTxEhERERERCUwTLxERERERkcA08RIREREREQlMEy8REREREZHANPFKY2Z2nZl9dbjHITISKV8iYShbIuEoX2Fp4pXCzMzNbOY+y75uZr/ry/Xd/aPu/q3oeqeY2ZaY+zMz+56Z1UT/vmdmNvBHIJK8hiFfp5rZo2ZWZ2YbBjxwkSQ3DNn6vJktN7MGM3vdzD4/8NGLJLdhyNdnzGy9mdWb2TYz+6GZZQ38EYxsmnhJf1wN4EIARwA4HMA7AHxkOAckMoI0AbgBgA4KRQaXAfgAgDIAZwG4xswuHd4hiYwYdwM4yt1LAMxDzzHiJ4d3SMlLE68RbO87FWb2OTOrNrPtZvbBXvVFZvZtMysEcD+ACWbWGP2bsJ+bvBzA9919i7tvBfB9AFcMyYMRSTKDnS93f97dfwtg/RA+DJGkEyBb17r7S+7e6e6rANwF4IShe0QiySNAvta5e+3eqwPoBjBz38tJD028Rr7xAEYBmAjgSgA/M7Oy3hdw9yYAZwPY5u5F0b9t+7mtQwEs7fX70miZSLoazHyJyD8FyVb09fiTALwaZtgiKWFQ82Vm7zGzegC70POJ1y+Djj6FaeI18nUA+Ka7d7j7fQAaAcwZ4G0VAajr9XsdgCL9nZekscHMl4j8U6hsfR09xz6/GYTbEklVg5ovd/999FXD2QCuA1A1OMMceTTxSm1dALL3WZaNnkDtVePunb1+b0bPBGogGgGU9Pq9BECju/sAb08kmQ11vkTSxbBky8yuQc/fep3r7m0HclsiSWzY9l3uvgY9nyb//EBva6TSxCu1bQIwbZ9l0wFsHMBt9WXy9Cp6PkLe6wjo6xoycg11vkTSxZBny8w+BOALAE5zd3qWNpEUN9z7riwABw3gemlBE6/UdiuAr5jZJDPLMLPT0XOmwdsGcFtVAEab2ShymZsAfNbMJkZ/YPk5AIsGcF8iqWBI8xXdRx563pk0M8szs5wBjVwkuQ11tt4L4L8AvN3ddfIaGemGOl8fNrOx0c+HAPgigEcGcF9pQROv1PZNAE8DeBLAHgDXAnivuy/v7w25+0oAtwBYb2a1Cc5q+EsA9wB4BcByAH+B/oBSRq6hztfJAFoA3AdgSvTzgwMcu0gyG+psfRvAaAAv9Do723UDH75IUhvqfJ0A4BUza0LP/us+AF8a6OBHOtOf54iIiIiIiISlT7xEREREREQC08RLREREREQkME28REREREREAtPES0REREREJLCs4R7AgcjJKvD8nNKE9bZKo9e35gObd3rM1XOrW2Nvo2Pavj3u3ihrB38M7SV8EJVle2i9uq2Y1rvr+SriB7gG5dR103p7afxrFPc6IIOfQCargT/Hnfn85tu3btnl7mNiRpFyMgsLPau8PGE9oyNhCUD8upHdwF8Xz4zJb3f8iYG6Y26jO26MzXz97MzjK183jzc8lz+GzOaY8Rfx8cVt42KzAyC7iL/Qcedn6mjnT3LuTv4YGpq3j8h8ZeUXenZJ4nzF5ScrZvfSHfPaZnTxelcfGhnE5Sevig+yfXQev4EiPkhvzaT1jHZ+83Hrf9xrYJ287jHjBwBvj3kMMdvZ/FL+HDc15yasddbsQVdjE9/IpKDMokLPGl2W+AJxj7ibXyAzJntdMdvl3J0x9w+go/DAjk8zY9b9jlI+xpI8/iDrW2IOjDri9t/86uVlDbRe1x5z/wC6nY/BY+o5O/jOraOS33/ruv3vu1J64pWfU4rj5nw4Yf31L/OHl704ZtIR8+x0Jd6eAQBm/HglvwCA7T8YS+sV/8tXrs2n8/qX3v1HWv/J2rfRevtDFbTelvi4AQDgMZOeqfc10/rG8wr4HQDoLOT30V3Ad37jnuA7vpp5PJzr/+NzA2lKmPSyyssx6VOfSVjPj3lToHUMf10mPs6PWtpG8dclblIEAO1FfOfVPJbXxy3m6+fuQ3j+msfFPEcz22i95EW+kWk7me+csl7g27iOQloGAFS+ZSutt3fx12nbFr6RmPOzFlp/6KVvjMh8ZZeUY+Z7P5uw3jqa52f0q7zeVsLXvbw9MRPeKfx1BYCWsXwMs65dReubL5/L7+AttbTc/hprOwkUbuY331kYk88K/vjyq/n1O06o5wMA0Lq1iNYLt/Jt1KEX8OOM55bOTFjb8d0f0eumqqzRZRj/5U8lvoDx19ViJvSjVvHXpOEEvk2b3odGBjsWxkwsYiaPJRt5vqsv5BOrt83k2X3w1UNoPauKv3OT3cgfwLv/5TFa/8uWQ2kdAJrb+Bg6OvjrPP2/+bHj1v/k69FrF35zv/uuYF81NLMbzKzazJb3WnarmS2J/m0wsyXR8mlm1tKrpv4aIoTyJRKO8iUShrIl6S7kJ16LAPwUwE17F7j7u/f+bGbfB1DX6/Lr3H1+wPGIjCSLoHyJhLIIypdICIugbEkaCzbxcvcnzGza/mpmZgAuAcC/5yYi+6V8iYSjfImEoWxJuhuusxqeBKDK3df0WjbdzF42s8fN7KREVzSzq81ssZktbu/kf38hkqYGJV/djU3hRyqSegYlX10typfIPgYnW9p3SRIbrpNrXAbgll6/bwcwxd1rzOxoAH82s0Pd/U1/meru1wO4HgBGFUyIP62ZSPoZlHzlTp6sfIm82aDkK3+c8iWyj8HZd02dpGxJ0hryT7zMLAvAOwHcuneZu7e5e03084sA1gGYPdRjE0l1ypdIOMqXSBjKlqSL4fjE63QAK919y94FZjYGwG537zKzGQBmAVgfd0OtozOx+vLEp5OdeDM/nebm82MaHbTxeWnmKN5gY+cFc/jtA+h4hp9Sc8dx/Prt0/kpQb9578X8BmJOSerT+XNY+SR/Y2nbSfwOtpzGz2fdWRB/yvCS1TG9lHJ4vXoBP2Xo+Kf5/ceuqENr0PJl3bwPTsVynp+aQ/ipXGsO5U2uGmbx081nlsTkF0DGBn5K3pyYsz1XHcPbGbTFnPK78nh+KvZNr/JGIJ/+xG20/oPreb4PeRc/1fSez0ykdQD42HseofVv/c/7+Q0s4NvJjefzU4LjJV4eYoOWL2TwHoHtFXy7VHUc365NeIJvO2sP4qdSLtwev+09/t1LaX3dXw+m9cYZMY2wtvNTrWfEtBLZczR/DgvXxvTRjDnlddvxvJ1DxtISWgcAn8q3YxntfDv63Orp/A5Sp0vXoGVrTHEDPn5i4u3WX/6D/wlZzcE8WzkxPSiz1/D9zrp3x/d3K+Fnc0fHKXW0vruAb1e7dvIeeg+28dPFVz7As7PnXY203lrF962LXngLrZe/ENMkE0DB+btofdc23uqkIXEnhp4x/HpgH6yGPJ38LQCeATDHzLaY2ZVR6VK88aNkADgZwLLoFKK3Afiou+8ONTaRVKd8iYSjfImEoWxJugt5VsPLEiy/Yj/Lbgdwe6ixiIw0ypdIOMqXSBjKlqS74TqroYiIiIiISNrQxEtERERERCQwTbxEREREREQC08RLREREREQkME28REREREREAhuOPl6DJqMDKNqceO7YzluAIGsn72NSxlvgoHU0f/qax/PrAwBi2gAUbeO9VLKaeC+GjtN5r4e8+3ifkbZy3gRkT0wrw9w9vJ7dxOudBfFNSNrKeN1inuPZN/J+EzuPie/FMhJltgMlpGNKVy5/3yavhj/xjZP5azvuSX77xRvj142aebyeW8fztfsQfh8H3VhF61t38z5ZmQt5AL7xxAW0nlPGn+NvTrq
"text/plain": [
"<Figure size 864x936 with 16 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, axs = plt.subplots(4, 4, figsize=(12, 13))\n",
"fig.tight_layout(w_pad=2)\n",
"for i, ax in enumerate(axs.flatten()):\n",
" ax.imshow(avg_firing_rates[:, :, i], extent=(0, 360, 0, 180), aspect=2)\n",
" ax.set(xlabel=\"phase\", ylabel=\"orientation\", title=f\"Unit {i}\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"G_PAD = 5\n",
"\n",
"def gauss(img):\n",
" img_vpad = np.concatenate((img[-G_PAD:][::-1, ::-1], img, img[:G_PAD][::-1, ::-1]))\n",
" # pad horizontally too\n",
" img_vhpad = np.concatenate((img_vpad[:, :G_PAD][::-1], img_vpad, img_vpad[:, -G_PAD:][::-1]), axis=1)\n",
" return scipy.ndimage.gaussian_filter(img_vhpad, sigma=2, mode='wrap')[G_PAD:-G_PAD, G_PAD:-G_PAD]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(20, 20)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"avg_fr_blur = np.array([gauss(avg_firing_rates[:, :, i]) for i in range(40)])\n",
"gauss(avg_firing_rates[:, :, 0]).shape"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAOUCAYAAACyq+IgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAADqeklEQVR4nOzde5xsd1nn++9Tl75f9jXJzo0kEILAwQgMyCgOozNHRBzAw4sBUVEZI6McnRmHEVTEw4zO6Bn1jDMKxhdM0EFEuQgqjjKIMiogAWIIkEASQrJz2TvZ177X7Tl/dG1sdnY9T3V3/bqruz/v16tf3b1+tWr9atV61lq/uqyvubsAAAAAAOVUtrsDAAAAALDbMfACAAAAgMIYeAEAAABAYQy8AAAAAKAwBl4AAAAAUBgDLwAAAAAojIHXHmZmbzaz1293P4DdiPoCyqC2gHKor7IYeO1gZuZm9rjzpv2smf2PfuZ391e5+7/vzvccMzuaLM/M7BfM7ET35xfMzDb+CIDhtQ319Y/N7MNmdsbM7tlwx4Ehtw219Rozu83M5szsS2b2mo33Hhhu21Bf/9rM7jazs2b2gJn9ipnVNv4IdjcGXliPGyS9UNLXSnqKpO+Q9EPb2SFgF1mQ9FZJnBQCg2WSvlfSfknPlfRqM3vp9nYJ2DXeL+mp7j4j6claPUf80e3t0vBi4LWLnXulwsx+3MyOm9mDZvb9a9pvMrP/YGaTkv5E0qVmNt/9ufQCd/kKSb/k7kfd/X5JvyTp+7bkwQBDZtD15e5/6+6/LenuLXwYwNApUFu/6O6fcveWu98h6X2SvmHrHhEwPArU113ufvrc7JI6kh53/u2wioHX7neJpFlJl0l6paRfM7P9a2/g7guSvk3SA+4+1f154AL39SRJf7fm/7/rTgP2qkHWF4C/V6S2uh+Pf7akz5bpNrAjDLS+zOy7zOyspEe0+o7XbxTt/Q7GwGv3a0p6o7s33f0DkuYlXbfB+5qSdGbN/2ckTfE9L+xhg6wvAH+vVG39rFbPff77AO4L2KkGWl/u/jvdjxo+XtKbJR0bTDd3HwZeO1tbUv28aXWtFtQ5J9y9teb/Ra0OoDZiXtLMmv9nJM27u2/w/oBhttX1BewV21JbZvZqrX7X69vdfWUz9wUMsW07drn7F7X6bvKvb/a+disGXjvbvZKuOm/a1ZK+vIH76mfw9FmtvoV8zteKj2tg99rq+gL2ii2vLTP7AUmvlfQt7h5epQ3Y4bb72FWT9NgNzLcnMPDa2d4p6afN7HIzq5jZP9HqlQbftYH7OibpoJnNBrf5LUn/xswu637B8scl3bSBZQE7wZbWV3cZY1p9ZdLMbMzMRjbUc2C4bXVtvVzSz0v6p+7OxWuw2211ff0LM7uo+/cTJb1O0oc2sKw9gYHXzvZGSX8j6a8knZL0i5Je7u63rfeO3P12Se+QdLeZne5xVcPfkPSHkj4j6TZJfyy+QInda6vr65skLUn6gKQru3//2Qb7Dgyzra6t/yDpoKRPrLk625s33n1gqG11fX2DpM+Y2YJWj18fkPSTG+38bmd8PQcAAAAAyuIdLwAAAAAojIEXAAAAABTGwAsAAAAACmPgBQAAAACF1ba7A5tRG5v00akDPdsrrfjCIdZJFpBdeGQQ1yWxZBGV+AZeTdqT+8+WX1ravz5eGkjvI2HJ85htJ4uPHH3E3Q9vrhfDZ6Q67uO1mZ7t3mz1bFu9QVJ/1Wo8fz3ePXk9mV/lt43sMWb126ln7fHiO9nF5qvxxlup5DsxT1ait+N2a8btlUa8/KXdWl+VMR+vTAe3yHZMycZdSeojO7Yk7YO4j/T4le3/s+NnMnt2fMmWv9n2fvqQPoqkPq3du615+qTaCwvbfBYweCOz4z52Se9jVydZZ+1O/KR0OtmGN4BVmhx8LNl3V5L5s3ZPiis9Lmzy/Dg7NmX9X+1E3NzKnud2VuBxc+PL91/w2LWjB16jUwf0Nd/xr3u2j58I9jiS6gvxiWOlkZxxd7IDY9wsSV6Pn9jWePwUNSeT+ceSE7ta0snsMWTHhGS7zU4s20n/Jak9mt4kVF2J2+vz8YP81Ft+fCOhhENvvDajf3jpy3u2tx86Hs7vK/GKrc7ujztw6UVhc+PwZDy/pNZ4fPKZ7burK/E+xJJ9QHMirt+lw3H7/GXx9r90Wdy/6oH4ORifSDZ+Sc1m3MflU2Nh++iDcZFPHY3X4adv3KX1VZnWs2Ze0PsG2fFlJF6vNhXXh0/Ez1tnIo+Qa4/HfWhNJsevqfgA0RxPToyyFyaSM5zOSFxfrYl4/mayC2pN5CeHnYn4PMOryQl48sLGyKne6/DeN/1KOO9ONXbJjJ755u/q2b7QjLftM0txbSwtxfN3mpv/MFmlFj/vI6PNsH18NH5Fa6wen/9mg8+V5LjQbMfH3mol3u4nkv5P1OPHL+WP4cRCXOALZ+PtwJfjx3jvDT9xwWNXsY8amtlbzey4md22Zto7zeyW7s89ZnZLd/pVZra0po18DSBAfQHlUF9AGdQW9rqS73jdJOm/SfqtcxPc/Z+f+9vMfknSmTW3v8vdry/YH2A3uUnUF1DKTaK+gBJuErWFPazYwMvdP2JmV12ozcxM0kskfXOp5QO7GfUFlEN9AWVQW9jrtuuqhs+WdMzdv7hm2tVm9mkz+0sze3avGc3sBjO72cxubi0vlO8psPMMpL4a7aXyPQV2nsHUl1NfwHkGUlvNM9QWhtd2XVzjZZLeseb/ByVd6e4nzOxpkv7AzJ7k7mfPn9Hdb5R0oyRNHrpiENcVBHabgdTX7OjF1BfwaIOpr9ph6gv4agOprZnrOHZheG35O15mVpP0nZLeeW6au6+4+4nu35+UdJekx29134CdjvoCyqG+gDKoLewV2/GO1z+RdLu7Hz03wcwOSzrp7m0zu0bStZLuzu7IK1I7uNqjJ48uuxR0pRFfqlmd5HLzWc6KpHY1uVxucrn37HLxzcnN5QhlNpuVlrXXlvIXrmqLcXsliZuqrsTLqC3vqBfPBlZfMpOCrC1Ltu80AqsRXy62shB/XKRey183qs0nWUZZ2EiWKDGWZI3NxOtoZTZuXz4cd6B+OF5Hh2fnw/Z+nGwll+RPLp1cXY7vv58aHyKDra96cFnqZhJwtllZ/fZRX50kDiWLA2lOJJeTTy7X3h5Njm/JFfHbWZzJeLxtZpezVx85edZIcriSvKRKMn91uXd7mmW6tQZWWyvNmu46dqhne3sp3m/bfNxen08u4b+0+Ryv9li87Szvjzfu1oF4vz22fy5sv2Qybp+qJ1El1fhy7zO1+Ng1U4sPHJ0+8pqOLsWRNc1OHFmzshwXeLuP+r6QkpeTf4ekj0q6zsyOmtkru00v1Ve/lSxJ3yTp1u4lRN8l6VXufrJU34CdjvoCyqG+gDKoLex1Ja9q+LIe07/vAtPeLendpfoC7DbUF1AO9QWUQW1hr9uuqxoCAAAAwJ7BwAsAAAAACmPgBQAAAACFMfACAAAAgMIYeAEAAABAYduR4zVQHgwdLclvqqzEOV2VxSRHpRXP76N9rN4kByjL2UpzvKY2l3OSsXaSMRJHOaiSrOJqI89JqMZxEqotx2ElWY5QdTnJc9ulvFpRe7Z3kE5lbjqcP3tVx0aSja8ygNeFkpwuayfbV5bzlcjqtz2ezD8db3tZTtdFE3EWy6mVibgDkhorcZZJbS5+nkZPx+tw9MxwhQltGTPZaO8a8FZyAMtk226aYbf5fDVPssI6ScxeltPVSjbfLAupneyCvJ6tw7i50syzhrJjoLU2d4wN45J2a+m1Te2zvZ/cymK8zxo5m7SfiRdfW9hcvqmUZ7DK4j42JpJzyyQfbmYkztl67MQjYftjRuP2S2rxShyzeMM+0Z4K2yWpmexg7qkdCNurtfiJytp74R0vAAAAACiMgRcAAAAAFMbACwAAAAAKY+AFAAAAAIUx8AIAAACAwhh4AQAAAEBhDLwAAAAAoLBiOV5m9lZJz5d03N2f3J32s5J+UNLD3Zv9pLt/oNv2OkmvlNSW9KPu/qfpQjzOwKgtxhk41VOL8WOYj9u
"text/plain": [
"<Figure size 864x936 with 16 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, axs = plt.subplots(4, 4, figsize=(12, 13))\n",
"fig.tight_layout(w_pad=2)\n",
"for i, ax in enumerate(axs.flatten()):\n",
" ax.imshow(avg_fr_blur[i], extent=(0, 360, 0, 180), aspect=2)\n",
" ax.set(xlabel=\"phase\", ylabel=\"orientation\", title=f\"Unit {i}\")\n",
"avg_fr_blur = avg_fr_blur.swapaxes(0, 2).reshape((400, 40))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Topological noise reduction (not used)"
]
},
{
"cell_type": "code",
"execution_count": 109,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"sys.path.insert(0, '../model')\n",
"from noisereduction import top_noise_reduction"
]
},
{
"cell_type": "code",
"execution_count": 149,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Topological noise reduction: 100%|██████████| 100/100 [31:33<00:00, 18.93s/it]\n"
]
}
],
"source": [
"firing_rates_noise_red = top_noise_reduction(pd.DataFrame(firing_rates_flat[::5]))"
]
},
{
"cell_type": "code",
"execution_count": 150,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(400, 40)"
]
},
"execution_count": 150,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"firing_rates_noise_red.shape"
]
},
{
"cell_type": "code",
"execution_count": 151,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Topological noise reduction: 100%|██████████| 100/100 [3:44:17<00:00, 134.57s/it] \n"
]
}
],
"source": [
"firing_rates_noise_red = top_noise_reduction(pd.DataFrame(firing_rates_flat))"
]
},
{
"cell_type": "code",
"execution_count": 166,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(2000, 40)"
]
},
"execution_count": 166,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"firing_rates_noise_red = firing_rates_noise_red.to_numpy()\n",
"firing_rates_noise_red.shape"
]
},
{
"cell_type": "code",
"execution_count": 167,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 167,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"firing_rates_noise_red[0] in firing_rates_flat"
]
},
{
"cell_type": "code",
"execution_count": 168,
"metadata": {},
"outputs": [],
"source": [
"from decoding import cohomological_parameterization"
]
},
{
"cell_type": "code",
"execution_count": 171,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcoAAAGwCAYAAAApJSV7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABi/0lEQVR4nO3deVxU9foH8M/MwAw7CMqmCOaeC7iB9KvcKKxuimmaWZp51W5WFpVbLtkNMLdWy5st1r2ZZpmV272IlpooCrivmVvKIiD7znx/f4wMjDODLDNzZuDzfr3mFfM9z5zzHI15POd8F5kQQoCIiIgMkkudABERkTVjoSQiIqoDCyUREVEdWCiJiIjqwEJJRERUBxZKIiKiOrBQEhER1cFO6gRslVqtxvXr1+Hq6gqZTCZ1OkRE1ABCCBQUFMDf3x9yed3XjCyUjXT9+nUEBARInQYRETXB1atX0a5duzpjWCgbydXVFYDmD9nNzU3ibIiIqD6WL1+Of/7zn9r31d/ldWGhbKTq261ubm4slERENqKiogIAsGDBAvzzn/+s16MzGed6bZz8/Hy4u7sjLy+PhZKIyEYIIfDbb7+hb9++9f4OZ69XIiJq1r799luUlJQA0NwNHDx4cIM+z0JJRETNVmxsLJ588kmMGDEClZWVjdoHCyURETVLsbGxeOONNwAAQ4YMgZ1d47rlsFASEVGzU7tIxsTEYN68eY3eFwslERE1K6YskgALJRERNSMrVqwwaZEEOI6SiIiakfvuuw/u7u6YNWuWSYokwEJJRETNSGhoKE6fPg0/Pz+T7ZO3XomIyKatWLECSUlJ2vemLJIAryiJiMiGVXfccXd3N/mVZDVeURIRkU2q3bt11qxZZimSAK8obUJBaQW2HEtDTlE5hnT1xt3+nFuWiFo2Uw8BqQsLpZW7lFWEsf9KRGZBGQBg2X/PYs5D3fDcoI4SZ0ZEJA1LFkmAhbLJioqKoFAo9NoVCgUcHBx04oyRy+VwdHQ0GLvkl6NIz86rCZbJsOJ/ZzG6bzu0cVWhuLgYxhaAkclkcHJy0r5vSGxJSQnUarXRnJ2dnRsVW1paiqqqKpPEOjk5aZfIKSsrq3Mex4bEOjo6alc8Ly8v1y7L09RYBwcH7f8rDYmtqKhAeXm50ViVSqWdmqshsZWVlSgrKzMaq1QqYW9v3+DYqqoqlJaWGo21t7eHUqlscKxardZObN3UWDs7O6hUKgCa1SSKi4tNEtuQ33tTfUfcKba5fUf8/PPP2iL55ptvYubMmUb/POr6va/rz1CPoEbJy8sTAIy+Hn74YZ14Jycno7GDBg3SiW3durXRWKVvZxE4e4tIOJ0uhBAiMDDQaOzdd9+ts9+7777baGxgYKBObP/+/Y3Gtm7dWid20KBBRmOdnJx0Yh9++OE6/9xqGzNmTJ2xhYWF2thJkybVGZuZmamNff755+uMvXjxojb2tddeqzP2xIkT2thFixbVGZuUlKSNXbp0aZ2xu3fv1sZ+9NFHdcZu2bJFG/vll1/WGfvdd99pY7/77rs6Y7/88ktt7JYtW+qM/eijj7Sxu3fvrjN26dKl2tikpKQ6YxctWqSNPXHiRJ2xr732mjb24sWLdcY+//zz2tjMzMw6YydNmqSNLSwsrDN2zJgxOv8P1xVrru+I/v3768Q2t++I4uJi8eCDD4qYmBiTfEfk5eWJO+EVpY0K8nK+cxARUTPj6OiIrVu3ws7ODo8//rhFjsmFmxupeuHm69evG1z001S3VQ5fysGUtYdRXnXrtoVMhjGhd2HluBAAze+2Cm+96sfy1itvvbb0W6/Lli1DQUEBFi9eDBcXlzpja6vr9z4/Px/+/v71WriZhbKRqgtlff6Qm+rU9Xz8+8Bl3Cwqx9Bu3hjdrx0UcplZj0lEZA1qd9zZvXt3gxddNqYh3+G89WoD7vZ3Q9xjvaROg4jIom7v3WqqItlQnHCAiIisjqWHgNSFhZKIiKyKNRVJgIWSiIisyLFjxzB//nwA1lEkAT6jJCIiK9K7d2989tlnyMjIwNy5c6VOBwALJRERWYHi4mLt8JNnn31W4mx08dYrERFJKiYmBqGhocjMzJQ6FYNYKImISDIxMTGYP38+Tp48ic2bN0udjkEslEREJInqIln987Rp0yTOyDAWSiIisrjbi6Q19G41hoWSiIgsypaKJMBCSUREFpSfn4/PPvsMgG0USYDDQ4iIyILc3Nzw66+/YsuWLZgxY4bU6dQLryiJiMjszp49q/05MDDQZookwEJJRERmFhsbi549e+KHH36QOpVG4a1XIiIym9oTnJ8/f17ibBqHV5RERGQWt68CMmfOHIkzahwWSiIiMjlrWyqrKVgoiYjIpJpTkQSspFCuWrUKQUFBcHBwQFhYGJKSkuqM37hxI7p16wYHBwf06tUL27Zt026rqKjA7Nmz0atXLzg7O8Pf3x8TJ07E9evXdfYRFBQEmUym81qyZIlZzo+IqKUQQuDSpUsAmkeRBKygUG7YsAHR0dFYtGgRUlJSEBwcjMjISKOzyO/fvx/jx4/HlClTkJqaiqioKERFReHEiRMANEu1pKSkYMGCBUhJScGmTZtw9uxZjBgxQm9fb731FtLS0rSvF1980aznSkTU3MlkMqxevRrbtm1rFkUSAGRCCCFlAmFhYRgwYAA++ugjAIBarUZAQABefPFFgw9+x40bh6KiImzZskXbNnDgQISEhGD16tUGj3Ho0CGEhobi8uXLaN++PQDNFeXLL7+Ml19+uV55lpWVoaysTPs+Pz8fAQEByMvLg5ubW31Pl4ioWdq0aRMeffRR2NvbS51KveTn58Pd3b1e3+GSXlGWl5cjOTkZERER2ja5XI6IiAgkJiYa/ExiYqJOPABERkYajQeAvLw8yGQyeHh46LQvWbIEXl5e6NOnD5YtW4bKykqj+4iLi4O7u7v2FRAQUI8zJCJq/mJjYzF69Gg8+eSTUKvVUqdjcpKOo8zKykJVVRV8fHx02n18fHDmzBmDn0lPTzcYn56ebjC+tLQUs2fPxvjx43X+1fDSSy+hb9++8PT0xP79+zF37lykpaVh5cqVBvczd+5cREdHa99XX1ESEbVktTvu9OnTB3K55E/0TK5ZTzhQUVGBsWPHQgiBTz75RGdb7aLXu3dvKJVKTJ8+HXFxcVCpVHr7UqlUBtuJiFqq5ta71RhJS3/r1q2hUCiQkZGh056RkQFfX1+Dn/H19a1XfHWRvHz5MuLj4+94DzosLAyVlZXa3lpERGRcSymSgMSFUqlUol+/fkhISNC2qdVqJCQkIDw83OBnwsPDdeIBID4+Xie+ukieP38eO3fuhJeX1x1zOXLkCORyOby9vRt5NkRELcOyZctaTJEErODWa3R0NCZNmoT+/fsjNDQU7733HoqKijB58mQAwMSJE9G2bVvExcUBAGbOnIlBgwZhxYoVeOSRR7B+/XocPnwYn376KQBNkRwzZgxSUlKwZcsWVFVVaZ9fenp6QqlUIjExEQcPHsSQIUPg6uqKxMREvPLKK3jqqafQqlUraf4giIhsRL9+/eDo6Ij58+c3+yIJABBW4MMPPxTt27cXSqVShIaGigMHDmi3DRo0SEyaNEkn/rvvvhNdunQRSqVS9OjRQ2zdulW77eLFiwKAwdfu3buFEEIkJyeLsLAw4e7uLhwcHET37t1FbGysKC0trXfOeXl5AoDIy8tr0rkTEdmiS5cuSZ1CkzTkO1zycZS2qiFjcIiIbN3777+PBx54AHfffbfUqZiEzYyjJCIi6xcbG4uXX34ZQ4cORXZ2ttTpWBwLJRG1COXl5UhLSwOKc4CSXABAWloaysvLpU3MytXu3frSSy/Vq3NkcyN5Zx4iInMrLy/H46MexYlD+7B7ghztPexxpc0QDFmegp69emPjxo1QKpVSp2l1WtIQkLqwUBJRs5ednY0Th/bizxslGPKVDF9HOWLi+z/iz5sCkMmRnZ0NPz8/qdO0KiySNXjrlYiaPT+nKuyeoMBdrWT486bAvV8W48+bAne1kmN3wk4Wydt89dVXLJK1sFASUfMnk6O9uxxfRzn
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Decoding... done\n"
]
}
],
"source": [
"param = cohomological_parameterization(pd.DataFrame(firing_rates_noise_red[::5, ::5]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### PCA"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.decomposition import PCA\n",
"import seaborn as sns"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<AxesSubplot:>"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWgAAAD8CAYAAABaZT40AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5hUlEQVR4nO2de5wcZZX3v6fnksnkNoEECCSYAEFkUYREXtRVEbwEZGXXdRWQFbyhuCDgbfGy+IruZ0FcWdlV16xGRRHECJJXwwKLXGQ/ckkCBAi3JNwmhIRLEpJMJslMn/ePqoR2qHO6prtmpmdyvvn0Jz311FPP009VP1X9nPM7R1SVIAiCoPEoDXUHgiAIgmxigg6CIGhQYoIOgiBoUGKCDoIgaFBigg6CIGhQYoIOgiBoUGKCDoIgyIGIzBORtSLygFEuInKpiCwXkaUicni9bcYEHQRBkI+fAnOc8mOBmenrdOAH9TZY1wQtInNE5JH0jnFevZ0JgiBoVFT1NuBFZ5cTgMs04Q6gQ0Sm1NNmc60VRaQJ+B7wTqATuFtEFqjqMqvO9udXmrLF9x3+mcztH9k23uzDtW1bzbKjto/O3H4Im806j+oYs2zfcrdZdn9LW+b2OR1rzTrdXS1m2bKujsztP2/ZYNbZq5T9eQFm6KjM7c2OiFTsIlaUtjml2YxyngWanNY205u5faP2mHXGSJNZds+27HPyF62TzDpe/1qNz7Ude3B7KJtlbdh9327Ua3HGttsYP4AuzS7zntqandJe5zNbeP27+skF3mWYC2/OqaR18v6fJHnq3cFcVZ3bz+b2AZ6u+Lsz3ba6n8fZSc0TNHAEsFxVVwKIyJUkdxBzgg6CIBhUyvYNoJJ0Mu7vhDzg1LPEYd0tgiAIGgMt53sVwypgWsXfU9NtNTPgRkIROV1EFonIoh9ddsVANxcEQfAy5XK+VzEsAD6cenMcCWxQ1ZqXN6C+JY5cd4vKnw5514OCIAiKQIt7OkZErgCOAiaJSCfwNaAlaUf/E1gIHAcsB7qAj9TbZj0T9N3ATBGZQTIxnwicXG+HgiAICqPXNib3F1U9qUq5Av9QWIPUMUGrao+InAlcDzQB81T1Qa+O5akBcPWSSzO3/83hZ5l1ztwyziy7YXT2ibmid4tZZ0LJvttuKtueC5OMen94Kdu7A+Al53jjWzdmbt9Pxpp12pzVqlHG75bf63NmnQObJphlp2zNNrxc3GJ/pv1Ldt896/+hva2Z2+9sso0/h/Rme60A9LZOzty+F9ntACzTTWaZ5eHxarE9gtaw3Swr1+AJ0ePU2e7Ee7e8P9rEvpa859GS0Y9uw1tkUMhpJGxU6nmCRlUXkjzWB0EQNB4FLnEMBXVN0EEQBA1NcQbAISEm6CAIRixFGgmHgprd7ERkmojcLCLLRORBETm7yI4FQRDUzeC62RVOPU/QPcDnVHWJiIwDFovIjZ7U25NtW8bAa5b8u1ln9N5vMcuObn1t5vYLetvNOr9qsg1Fs3ptg+RWww7T4th7JvTaF8XCtmwj0jNqy82ve36pWfahybMzt5/VvbtZZ63a9+6LWtZnbj+KDrPOU9jW9Lu225L4X2/JLjt2/GvMOj/pecIs+wjTM7cvbbLDBqzuyTbaAnzS0GZd0rvSrHN4mx2eYcX29WbZhKZsOf8Gx/Dd4sjeJzZlG7FX9djHG12yQxS0S/Z00uTJwwf6CbfXNsgOB+rx4lhNqjFX1Y0i8hCJkjCk3kEQNAbDfImjkDVoEZkOHAbcWcTxgiAICqGBly/yULfUW0TGAr8BzlHVlzLKd0q9b+haXm9zQRAE+RncWByFU2886BaSyflyVb06ax9Vnauqs1V19rvaD6inuSAIgv6xqxoJRUSAHwMPqep3iutSEARBMWh5FzUSAm8G/h64X0TuTbd9OVUXZuIF2Ldk256nxpZn/miWPXXUGZnb/7LzYbPOZ1rsFGKXN71glllS5QlNtuR4Wc+zZtkHNfuXRosjwX3yuH3Nsptuz7a8n/zS/5p1Xtsx3Sw7u5ztuXBl83qzTrval9oXe/cyy95wUPbYntFpexr8uMX2TplrJBtYW7aPd2KTHUX34q2PZW4/v2T/WrwR+3twXk+2FB3gqVL2GE4q27L8u0fZT4eWk9GRJdvbam3Jlk5vNILvb3KSK7SV7O9IITTw03Ee6vHiuB0/8UYQBMHQ0sDry3kIJWEQBCOXXTlYUhAEQUOzqz9Bp8ljFwGrVPX4+rsUBEFQELvqGnQFZwMPAbZlIcXKtA12/GZLsg22IRBg31t+kLn972Z/yaxz1vttSe/q+fbHs+Lx7qu2dHzyaNs48pHJ2QbEi5+zM093LrKl6N2SbSrYe4xtTHt1q122qpx9vJkluw9tjrniiVbb+Ln98b0ztzcZMbMBljiy/HIp20BXcvr37rYXzbL5vdlxrruc4722bMcJ7yo58ZuNolUtdlsdaku910n2z39bzA1bndjTW41o0c3G9QeDECu6wID9Q0G9ftBTgfcAPyqmO0EQBAWyq/pBp/wb8EXAfmQJgiAYInQos7kUQD3hRo8H1qrq4ir77ZR637I522c0CIJgQBjmT9D1LHG8GXiviDwBXAkcLSK/6LtTpdT7qDEz62guCIKgn+yqsThU9UuqOlVVp5Nk9P6Dqp5SWM+CIAjqZZg/QQ+qH/QhbDbLrGzbXoB9T7ZteWv866J/Mevc9he2h8cHDYs3QLOR1XvcaPvzTt7PzhT924emZW7f1GwH7D9liy1Fn9OW7WnwqWY76L2T4JxbWJ+5fbMTHN3KIA1+EPgV+nzm9rdI9hgB/LD8tFmGkXj8iFZbbn7pNttz4dM6MXP73NIas84YJ4N4d7PtdTCxlO39scWRUntJwscY/hrLvKzjZfuAEyT7c3lZx72M7oUwzL04CpmgVfUW4JYijhUEQVAYDbx8kYdQEgZBMHJp4OWLPNQdsD8IgqBhKXANWkTmiMgjIrJcRM7LKN83TaR9j4gsFZHj6u1+vUKVDhGZLyIPi8hDIvLGejsUBEFQGAV5caQhLb4HHAscDJwkIgf32e2rwFWqehiJ48T36+1+vUsc3wX+W1XfLyKtgG3RAx7VMWbZBMMq5WXa9uI3W7JtzxD41gdtA+K/zPons8ySMe/XZUvbu5ZlG5cA/nZ2tpHrgfvsbNCfbt7PLLMSal9bsiXM+zmy7YMNVX/ZMfhsd8pGO88J09uyL6nVTobzN7ba47TRGIwX1bAeAt8cbxt7L97Ykbn9Lexh1vHYu9eWRb8in1zKC06MZs8EZxnv2sX+Gq9xDIhag8FvvTPuhVCckfAIYLmqrgQQkSuBE/jzJNnKyyEvJgDP1NtoPRlVJgBvBU4DUNVtmDbyIAiCISD/8sXpwOkVm+aq6tyKv/cBKp+cOoH/0+cw/xe4QUTOAsYA7+hvd/tSzxP0DOA54CciciiwGDhbVe3HjSAIgsEkpxdHOhnPrbqjz0nAT1X1X9Pl3p+LyCGqtbuS1LMG3QwcDvwgXXPZDGQtnO+Uev+hK6TeQRAMIsUZCVcBlc73U9NtlXwMuApAVf8EtAF2CMoc1DNBdwKdqnpn+vd8kgn7z6iUeh/dHlLvIAgGkeIm6LuBmSIyI7W3nQgs6LPPU8AxACLyGpIJ+rl6ul9PTsJnReRpEXm1qj6SdmyZV2ffsm3Y2VTOXr6e5cT29RK5WvGbPUWgZwj80uJvmGXzX5ddb5LxmQC6y3ac3p/ck62SW1+yE5ve2mQnIp0q2Qq0w+gw64xT+9691FCENjkxkD3F2BixL8NNmm2UGu3U8Qx+mw0jYYehggP46ku2cXuG0Y9laserFmecHil5Y5g9kbQ6MZ89w51lJPTOlfdE19SIXrtajFJRVXtE5EzgeqAJmKeqD4rIBcAiVV0AfA74LxE5l8RgeJpqfR2o14vjLODy9I6yEvhInccLgiAojp7ipN6quhBY2Gfb+RXvl5EEkSuMuiZoVb0XmF1MV4IgCAompN5BEAQNyq4s9RaRc0XkQRF5QESuEDEWO4MgCIYC1XyvBqWejCr7AJ8BZqvqISQL5ycW1bEgCIK62cX
"text/plain": [
"<Figure size 432x288 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fr_df = pd.DataFrame(firing_rates_flat)\n",
"sns.heatmap(fr_df.corr())"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(400, 40)"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"avg_fr_blur.shape"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(400, 7)\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>3</th>\n",
" <th>4</th>\n",
" <th>5</th>\n",
" <th>6</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>-0.000578</td>\n",
" <td>-0.000424</td>\n",
" <td>-0.000689</td>\n",
" <td>0.000034</td>\n",
" <td>-0.000342</td>\n",
" <td>-0.000145</td>\n",
" <td>-0.000016</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>-0.000181</td>\n",
" <td>-0.000554</td>\n",
" <td>-0.000777</td>\n",
" <td>0.000153</td>\n",
" <td>-0.000264</td>\n",
" <td>-0.000231</td>\n",
" <td>0.000029</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.000059</td>\n",
" <td>-0.000686</td>\n",
" <td>-0.000693</td>\n",
" <td>0.000247</td>\n",
" <td>-0.000197</td>\n",
" <td>-0.000266</td>\n",
" <td>0.000044</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.000138</td>\n",
" <td>-0.000856</td>\n",
" <td>-0.000464</td>\n",
" <td>0.000301</td>\n",
" <td>-0.000142</td>\n",
" <td>-0.000259</td>\n",
" <td>0.000039</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.000134</td>\n",
" <td>-0.001063</td>\n",
" <td>-0.000163</td>\n",
" <td>0.000324</td>\n",
" <td>-0.000106</td>\n",
" <td>-0.000209</td>\n",
" <td>0.000031</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 0 1 2 3 4 5 6\n",
"0 -0.000578 -0.000424 -0.000689 0.000034 -0.000342 -0.000145 -0.000016\n",
"1 -0.000181 -0.000554 -0.000777 0.000153 -0.000264 -0.000231 0.000029\n",
"2 0.000059 -0.000686 -0.000693 0.000247 -0.000197 -0.000266 0.000044\n",
"3 0.000138 -0.000856 -0.000464 0.000301 -0.000142 -0.000259 0.000039\n",
"4 0.000134 -0.001063 -0.000163 0.000324 -0.000106 -0.000209 0.000031"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"N_COMP = 7\n",
"pca = PCA(n_components=N_COMP)\n",
"pca.fit(avg_fr_blur)\n",
"data_pca = pca.transform(avg_fr_blur)\n",
"data_pca = pd.DataFrame(data_pca)\n",
"print(data_pca.shape)\n",
"data_pca.head()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(400, 50, 7)"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"firing_rates_in_trials_pca = []\n",
"for trials in firing_rates_in_trials:\n",
" firing_rates_in_trials_pca.append(pca.transform(pd.DataFrame(trials)))\n",
"firing_rates_in_trials_pca = np.array(firing_rates_in_trials_pca)\n",
"firing_rates_in_trials_pca.shape"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"avg_firing_rates_pca = data_pca.to_numpy().reshape((20, 20, N_COMP))# np.mean(firing_rates_in_trials_pca, axis=1).reshape((20, 20, N_COMP))"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAALUCAYAAACCfDpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAByE0lEQVR4nO3de7xkd1nn++9Tt33ve9JJuluSQAgEhmuIcfCC4IwB0WTm8OIEZYyYMaNGBeWg4A1HxRFmjghzBI1DTHAwgAFNxmFmxACDjhAMCZeEENMGSLrTSSd93de6PuePWg07O929f8/uWmvtrvq8X69+9a61n/rtX61a61vr2av2KnN3AQAAAACKUSl7AgAAAAAwSmjCAAAAAKBANGEAAAAAUCCaMAAAAAAoEE0YAAAAABSIJgwAAAAACkQThnXHzP7QzH6t7HkAGC1kD4CykD+jhyYMA2dmbmZPW7HsN8zsv6bc391/0t1/K7vfS8xszyo/z8zs7WZ2IPv3djOztT8CAKejErLne83sk2Z2xMy+vuaJAzjtlZA/bzKzu81s1sy+ZmZvWvvsUQaaMAyDayRdIem5kp4j6Qcl/bsyJwRgJMxLul4SBz8AimaSflTSZkmXSfoZM7uy3CkhgiYMhTv2Gx4ze6OZ7TezfWb2umXfv8HMftvMpiT9D0nnmNlc9u+c4wx5laT/1933uPteSf+vpB8r5MEAOG0MOnvc/XPu/qeSHijwYQA4DeWQP+9w9zvdvePu90m6RdKLi3tEOFU0YSjLWZI2Stoh6WpJf2Bmm5cXuPu8pJdLetjdp7N/Dx9nrGdJ+uKy21/MlgHASoPMHgCIyCV/sj/B+C5J9+QzbeSBJgxlaUv6TXdvu/vHJM1JunCNY01LOrLs9hFJ0/xdGIDjGGT2AEBEXvnzG+of0//JAMZCQWplTwBDqSupvmJZXf3wOeaAu3eW3V5Qv5laizlJG5bd3iBpzt19jeMBOD0VnT0AcEwp+WNmP6P+34Z9l7s3T2UsFIszYcjDg5LOXbHsPEnfWMNYKY3UPepflOOY54pT8sAoKjp7AOCYwvPHzH5c0pslvczdT3o1Raw/NGHIw4ck/aqZ7TSzipl9n/pXLLx5DWM9KmmrmW08Sc37Jf2Cme3I/nj1jZJuWMPPAnB6KzR7sp8xrv5vu83Mxs2ssaaZAzjdFZ0/PyLpdyT9C3fn4kCnIZow5OE3Jf29pL+TdEjSOyT9iLvfHR3I3b8q6SZJD5jZ4RNcHfGPJP03SV+WdLek/54tAzBais6e75a0KOljkr4t+/qv1zh3AKe3ovPntyVtlfQPy66i+Idrnz6KZvzZDAAAAAAUhzNhAAAAAFCg3JowM7s++zC6u5cte56ZfdbMvmBmd5jZJdlyM7N3m9luM/uSmb0gr3kBGH7kD4AykD0AUuV5JuwGSZetWPYOSf/e3Z8n6dez21L/Q+kuyP5dI+m9Oc4LwPC7QeQPgOLdILIHQILcmjB3/7SkgysX61uf57RR0rFPAL9c0vu977OSNpnZ2XnNDcBwI38AlIHsAZCq6A9rfoOk/2Vm/0n9BvCfZ8t3SHpoWd2ebNm+QmcHYJi9QeQPgOK9QWQPgBWKbsJ+StLPu/tHzOzVkt4n6fsiA5jZNeqftpfVGi8c33Rm8n0r3chPkqwTu3Kk9dLrI7VFcAvewWJ38EqgPnh+tlcNzqUaHD+4l3j0/HJwPrl+hmxwQ7DgPtV8eM/j7n5G7F4DM9j8qTdeOLY1PX/Ui/wkyYJPc6g+OpdwfXDyecdhYLP2aJ4E9/dwfTib860PzSc6l6jAdtM+fFDdhfm8Z3Qig82escYL69sDMdoN5vr6OjwJCe8vwddfq8XCcKzWSa6dqS+Fxp6pxOrHgk9sdFV2g1dbbwZXfjNwMNby2IHbUq8eq+/Exl/c/chxj31yvUS9mZ0r6a/c/dnZ7SOSNrm7m5lJOuLuG8zsjyR9yt1vyuruk/QSdz/pb4Mmz9jlF/5fP588n4mDwZ3nUPrOI0m1+XZybWUpNrZ60aOg4IFEPbYz9Bqx+u54+gbbnYgdpTQ3xOaytDk4/uZQudobYvtUdyr23Hotv322shRbN43Dsfp/fOsvfN7dLw7daY3yzp+Js3f5+Vf9QvJ8Kq3Y/KP1taX07SJSK0m1xWh9bJuutIP5FtwFeo307bQ9Fdumw/WToXJ1x2JZHjyWUPBYJTR+r57v0Xylnb5uvv7Hv6elhx8qpAnLO3vGnrLTz/qV1yfPp3Yk9hpZbYbKY51PsBGI/tIiuv13p2PZU9sSa3yedtZjybXfe8Z9obG/Z+qrofoLaunHqJJUt9jKP9iLHdd+vTMdqn+glf5Lz681Y7/rvW9ue6j+/oPbQvVfeOXvHPfYp+hL1D8s6Xuyr18q6f7s61sl/Wh2paBL1Q8oTscDGCTyB0AZyB4AT5Lb2xHN7CZJL5G0zcz2SHqrpJ+Q9C4zq0laUnZqXdLHJL1C0m5JC5Jel9e8AAw/8gdAGcgeAKlya8Lc/TUn+NYLj1Prkq7Nay4ARgv5A6AMZA+AVEW/HREAAAAARhpNGAAAAAAUiCYMAAAAAApEEwYAAAAABaIJAwAAAIAC0YQBAAAAQIFyu0R9EXoNaX5noL4e+9T4XjXwKfCSxmrp9fVqrP+1buxT3T04fmcitm7aM7FNpzWTPp/WdGy9tzaGytXa5KH6ztbYp8xPbFoK1W+bWgzVj9fSP5V+qRN7ng4enQrVN6sTofphYl2pfjR9W6rFnmbVF2L7fH0uvb4+l74NSVJ1rhWqryzF6tXpxurrse26NzWWXGudRmhsrwTnUotls8eiOfyr1V6w3gKbTrUTy/JKLGpVWwiMHdvk1zWrueobm8n17Vo9NH63GdvoKkvpz3OlGdsmaoux+vpcqFy9o8Fjn9nJUP29S2cn1x5tjofG3nvG5lD9RZMPh+rPqh0O1UfN9mLHD0u99O24brHXlC2NQJhIOmNqPlR/IpwJAwAAAIAC0YQBAAAAQIFowgAAAACgQDRhAAAAAFAgmjAAAAAAKBBNGAAAAAAUiCYMAAAAAApEEwYAAAAABaIJAwAAAIAC0YQBAAAAQIFya8LM7Hoz229md69Y/rNm9lUzu8fM3rFs+VvMbLeZ3Wdm35/XvAAMP/IHQBnIHgCpajmOfYOk/0/S+48tMLPvlXS5pOe6e9PMzsyWXyTpSknPknSOpL8xs6e7e/dkP8BrruYZJy15AuvEHq51LVQvSx+/14j1v9bzUH03OH5rJlbf3BRbN81N6bXtjb3Q2N0N6duAJI1tXArVb98wH6rfOXM4VL+tERu/Vkl/vAdbk6Gx/8li29nDC/VQfYFuUM75Y11p7Ej6+mrMxrbrxpF2qL52NH27rswuhsb2+YVQvRZj+1iUTU6E6iu+Ibm2Oh57nah0QuWyWFxJsV0yXB+dTzXweKPrprYQm3xjNr0+OpdTcINyzh5JqtbS86Q3EXuSo4c+vcCxVX02NnjjcGwuY4dj21C1HavvjMfmv/j4WHLtI49vD4196/ZNofq/3Xx+qP6MqdixyXS9Gaofj4SJpLHATlwJHsssdss5lsntTJi7f1rSwRWLf0rS77p7M6vZny2/XNIH3b3p7l+TtFvSJXnNDcBwI38AlIHsAZCq6L8Je7qk7zKz283sf5vZi7LlOyQ9tKxuT7YMAAaF/AFQBrIHwJPk+XbEE/28LZIulfQiSR82s9D5UTO7RtI1klTdsmnQ8wMwvAaaP43JzQOfIIChNNDsqW3bOPAJAihe0WfC9kj6qPd9TlJP0jZJeyXtWla3M1v2JO5+nbtf7O4XV6encp8wgKEx0PypjZM/AJIM9thnA9kDDIOim7C/lPS9kmRmT5fUkPS4pFslXWlmY2Z2nqQLJH2u4LkBGG5/KfIHQPH+UmQPgBVyezuimd0k6SWStpnZHklvlXS9pOuzS7e2JF3l7i7pHjP7sKSvSOpIujbl6kAAcDzkD4AykD0AUuXWhLn7a07wrdeeoP5tkt6W13wAjA7yB0AZyB4AqYp+OyIAAAAAjDSaMAAAAAAoEE0YAAAAABSIJgwAAAA
"text/plain": [
"<Figure size 864x864 with 6 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"\n",
"fig, axs = plt.subplots(2, 3, figsize=(12, 12))\n",
"fig.tight_layout(w_pad=2)\n",
"for i, ax in enumerate(axs.flatten()[:7]):\n",
" ax.imshow(avg_firing_rates_pca[:, :, i], extent=(0, 360, 0, 180), aspect=2)\n",
" ax.set(xlabel=\"phase\", ylabel=\"orientation\", title=f\"Unit {i}\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAL4CAYAAADyEv8AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABw60lEQVR4nO3de7wldXnn+++zLvvadxoQaRSIiEGPVyQ4jomRzBGNCcwcXx5MMiGGhElCLmYcE83NTBIz0ZkTo3PUhIwEzBjUoAlMxpnEoI6TE0URbyAaO4jS2NBA3/dtXeo5f6xqstl09/49u1f9avdan/fr1a/eq9azfutXv6p6qp5Va1WZuwsAAAAAkEej7g4AAAAAwDihCAMAAACAjCjCAAAAACAjijAAAAAAyIgiDAAAAAAyoggDAAAAgIwowrDumNkfmtmv190PAOOF3AOgLuSf8UMRhqEzMzezp6yY9ptm9l9TXu/uP+Xuv12+7sVmtmuV9zMze4uZPVL+e4uZ2drnAMDJqIbc871m9nEzO2Bm96654wBOejXkn9eb2Z1mdsjMvmFmr19771EHijCMgqslXS7pWZKeKekHJP2bOjsEYCzMSbpOEgc/AHIzST8qaaukSyX9rJldUW+XEEERhuyOfMJjZq8zsz1mttvMXrPs+evN7HfMbFbS/5D0RDM7XP574lGavFLS/+Puu9z9fkn/j6QfyzIzAE4aw8497v4Zd/9TSfdknA0AJ6EK8s9b3f0Od++5+9ck3SzphfnmCCeKIgx1eYKkzZLOlHSVpHea2dblAe4+J+llkr7t7hvKf98+SltPl/TFZY+/WE4DgJWGmXsAIKKS/FP+BONFku6qptuoAkUY6tKV9Fvu3nX3j0g6LOn8Nba1QdKBZY8PSNrA78IAHMUwcw8ARFSVf35Tg2P6PxlCW8ikVXcHMJL6ktorprU1SD5HPOLuvWWP5zUoptbisKRNyx5vknTY3X2N7QE4OeXOPQBwRC35x8x+VoPfhr3I3ZdOpC3kxZkwVOFbks5eMe0cSd9cQ1sphdRdGlyU44hniVPywDjKnXsA4Ijs+cfMflzSGyRd4u7HvZoi1h+KMFThA5J+zcx2mFnDzL5PgysW3rSGth6UdIqZbT5OzHsl/VszO7P88errJF2/hvcCcHLLmnvK95jS4NNuM7MpM5tYU88BnOxy558flvS7kv6Fu3NxoJMQRRiq8FuS/l7S30naJ+mtkn7Y3e+MNuTuX5V0o6R7zGz/Ma6O+EeS/pukL0u6U9J/L6cBGC+5c893S1qQ9BFJTyr//ps19h3AyS13/vkdSadI+uyyqyj+4dq7j9yMn80AAAAAQD6cCQMAAACAjCorwszsuvJmdHcum/ZsM/u0mX3BzG43s4vK6WZm7zCznWb2JTN7blX9AjD6yD8A6kDuAZCqyjNh10u6dMW0t0r69+7+bEm/UT6WBjelO6/8d7Wkd1fYLwCj73qRfwDkd73IPQASVFaEufsnJe1dOVn/dD+nzZKO3AH8Mknv9YFPS9piZmdU1TcAo438A6AO5B4AqXLfrPm1kv7azP6TBgXgPyunnynpvmVxu8ppu7P2DsAoe63IPwDye63IPQBWyF2E/bSkX3T3D5nZqyS9R9L3RRows6s1OG2vRmvieVObT0t/cfBCkBa9cGQg3oJXpXQL9sViL/BmrPkiGO+BNc1bsbFptIpQ/GSrt3rQMrPNTih+phG7Yf2UxfrTCizbhmLrgQXjoz73paWH3f3USt/k2Iaaf5rWft7s1Pb0F0evRBuNLwLxRWyb8WB8uO/BfGWN4Jc4munx3oolNw+0PWg/mJuDs1p1fKWiq00gtnNwr3oLc9UmuGMbbu6Zbj1v45O2JL+2CH7pqVfE4vv9wPbVi7Ud3D3G46PHecE1KHKsFDlOkiRrx/LyRPDYZ7rZDcVPNWLxE+Fjn/T5bSk2NtE0aMF91he/1D3qsU+ll6g3s7Ml/ZW7P6N8fEDSFnd3G8zBAXffZGZ/JOkT7n5jGfc1SS929+N+GjS7/Sz/zh/4xeT+NPrBg/vY+qRmJ739Ri9YhAXXkP5k7AWdDbEVamlLMP6U9PntbI9tmBtOmwvFn3fKQ6H45265b/WgZZ4zc28o/mnth0PxpzfTM/V08L6xTav2iKx5xs7PufuFlb5Jqer8s3nmiX7x+T+R3p9esJBZihX/tpBe/PtcbJspFhZD8d6NbcPWjBU+jdnpWPubN60eVOpvS4+VpO62qVD80tbYkdbSxuAB9EwsNxfBW0uH9kXRoiq4iUTid974+5p/8L4sRVjVuWfr0071S677v5L7M9+LLeRHFmZi8fs3JMf2HoltL5MPx3LDxP5QuJpLsZW0CH6I0gmkk6VTYxtA8wnzofhzTl35Ldnj+84tD4TinzYdO4F71sQjofgnNA8mx25pBD88D2aGdrAIO33H7qMe++T+DOzbkr6n/Pslkr5e/n2LpB8trxR0sQYJitPxAIaJ/AOgDuQeAI9T2dcRzexGSS+WtN3Mdkl6k6SflPR2M2tJWlR5al3SRyS9XNJOSfOSXlNVvwCMPvIPgDqQewCkqqwIc/dXH+Op5x0l1iVdU1VfAIwX8g+AOpB7AKRaTz/JBQAAAICRRxEGAAAAABlRhAEAAABARhRhAAAAAJARRRgAAAAAZEQRBgAAAAAZVXaJ+hzcpCJwI3jvx+5w7cESNRLfqLgvvalY+73g7cJ7M6Fw9WbS70rfmOmF2t4wtRSK3zqxEIrf3IzFT1k3FB/9JKSv9LHsqR9qu+ex+L6n92XkuMs6gXW1FxtbW4qtR76Uvh14J9h2N7ZNyotYvJrB+KBGYCtrBnNzNL5Rbe4PC27CFlm0wdWgEdtEYn0foVRlJjUsfYYKD+7f+7Htsd9PX0mtE+tLI7Z7V2s+tqDbwfjo9mhF+vx6K9b44sRUKP6+1pZQvAXWMUnqFbH15lAR6/+h9nRy7Kmtg6G2tzSix3nRZHV0nAkDAAAAgIwowgAAAAAgI4owAAAAAMiIIgwAAAAAMqIIAwAAAICMKMIAAAAAICOKMAAAAADIiCIMAAAAADKiCAMAAACAjCjCAAAAACCjyoowM7vOzPaY2Z0rpv+cmX3VzO4ys7cum/5GM9tpZl8zs5dW1S8Ao4/8A6AO5B4AqVoVtn29pP9X0nuPTDCz75V0maRnufuSmZ1WTr9A0hWSni7piZL+1sye6u79472BN6XuBkvukB23taPE92LxjWB8hDdj8b3p9HGRpO7GWPudLUUo3k/pJMeesnUu1PaTN+0LxT9pem8o/vT2/lD8xsZiKD5qydPHfsnTx12SOu6h+NhakNX1qjj/qChkhxfSe9SLJQjvxJadLy5V1raKYPKMasTylVqxXZe30+OLiViy7U/EPsvst0Ph4dzv0Y9WY5u8LLDRx/ehsc5E+hKdzxNwvarOPUGFx7avXj+2EhVL6SvpxEKsLxMHQ+Ga3hvbK00cjA219WMrUm8mfWzac7GNvbkYy4OL8xtC8f8wNxGK37M11v69m7aF4p80m36s98TJ/aG2t7cOheI3NqPHefcfdWplZ8Lc/ZOSVh7t/rSk33P3pTJmTzn9Mknvd/cld/+GpJ2SLqqqbwBGG/kHQB3IPQBS5f5N2FMlvcjMbjOz/2Vmzy+nnynpvmVxu8ppADAs5B8AdSD3AHicKr+OeKz32ybpYknPl/RBMzs30oCZXS3paklqb9w69A4CGFlDzT9TzeB3eAGMq6HmnpnTY1/7ArA+5T4TtkvSh33gMxr8pGS7Bl+WPGtZ3A4d4wuU7n6tu1/o7hc2Z2Yr7zCAkTHU/DPRnK68wwBGwlBzz+TWqco7DKB6uYuwv5T0vZJkZk+VNCHpYUm3SLrCzCbN7BxJ50n6TOa+ARhtfynyD4D8/lLkHgArVPZ1RDO7UdKLJW03s12S3iTpOknXlZdu7Ui60t1d0l1m9kFJX5HUk3TNsK8OBGB8kH8A1IHcAyBVZUWYu7/6GE/9yDHi3yzpzVX1B8D4IP8AqAO5B0Cq3F9HBAAAAICxRhEGAAAAABlRhAEAAABARhRhAAAAAJBR7ps
"text/plain": [
"<Figure size 864x936 with 6 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"\n",
"fig, axs = plt.subplots(2, 3, figsize=(12, 13))\n",
"fig.tight_layout(w_pad=2)\n",
"for i, ax in enumerate(axs.flatten()):\n",
" ax.imshow(scipy.ndimage.gaussian_filter(avg_firing_rates_pca[:, :, i], sigma=2), extent=(0, 360, 0, 180), aspect=2)\n",
" ax.set(xlabel=\"phase\", ylabel=\"orientation\", title=f\"Unit {i}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Point Cloud Simplification"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"def radial_distance(X, eps, random_state=None):\n",
" \"\"\"\n",
" point cloud simplification using radial distance (euclidean metric). \n",
" Start with the first point in in X and mark it as a key point. All consecutive points that have a distance less than a predetermined distance eps to the key point are removed. The first point that have a distance greater than eps to the key point is marked as the new key point. The process repeates itself from this new key point, and continues until it reaches the end of the point cloud.\n",
" \n",
" Parameters\n",
" ----------\n",
" X: pandas DataFrame (n_datapoints, n_features):\n",
"\n",
" eps: max radial distance - cutoff distance\n",
"\n",
" random_state: seed of random generator used for choosing the inital point\n",
"\n",
" Returns\n",
" -------\n",
" X.iloc[ind_reduced]: dataframe with chosen datapoints \n",
" \"\"\"\n",
" if random_state is not None:\n",
" np.random.seed(random_state)\n",
" \n",
" ix0 = np.random.choice(X.shape[0])\n",
" x0 = X.iloc[ix0]\n",
" xt = x0\n",
" ixt = ix0\n",
" X_temp = X\n",
" ind_reduced = [ix0]\n",
"\n",
" while True:\n",
" dist = np.linalg.norm(X_temp.to_numpy() - xt.to_numpy(), axis=1)\n",
" cond = dist < eps\n",
"\n",
" X_temp = X_temp.drop(X_temp.index[np.where(cond)])\n",
" if len(X_temp)==0:\n",
" break\n",
"\n",
" where_not_cond = np.where(np.logical_not(cond))\n",
" w = np.argmin(dist[where_not_cond]) \n",
" ixt = X_temp.index[w]\n",
" xt = X.iloc[ixt]\n",
" ind_reduced.append(ixt)\n",
"\n",
" return X.iloc[ind_reduced], ind_reduced \n"
]
},
{
"cell_type": "code",
"execution_count": 107,
"metadata": {},
"outputs": [],
"source": [
"from tqdm import trange\n",
"from noisereduction import compute_gradient\n",
"def top_noise_reduction(X, n=100, omega=0.2, fraction=0.1, plot=False):\n",
" \"\"\"\n",
" Topological denoising algorithm as in arxiv:0910.5947\n",
" \n",
" Parameters\n",
" ----------\n",
" X: dataframe(n_datapoints, n_features):\n",
" Dataframe containing the data\n",
" n: int, optional, default 100\n",
" Number of iterations\n",
" omega: float, optional, default 0.2\n",
" Strength of the repulsive force between datapoints\n",
" fraction: float between 0 and 1, optional, default 0.1\n",
" The fraction of datapoints from which the denoised dataset is\n",
" constructed\n",
" plot: bool, optional, default False\n",
" When true plot the dataset and homology each iteration\n",
" \"\"\"\n",
" N = X.shape[0]\n",
" inds = np.random.choice(N, round(fraction*N), replace=False)\n",
" S = X.iloc[inds]\n",
" sigma = X.stack().std()\n",
" c = 0.02*np.max(scipy.spatial.distance.cdist(X, X, metric='euclidean'))\n",
" \n",
" iterator = trange(0, n, position=0, leave=True)\n",
" iterator.set_description(\"Topological noise reduction\")\n",
" for i in iterator:\n",
" gradF = compute_gradient(S.to_numpy(), X.to_numpy(), sigma, omega)\n",
" \n",
" if i == 0:\n",
" maxgradF = np.max(np.sqrt(np.square(gradF).sum(axis=1)))\n",
" S = S + c* gradF/maxgradF\n",
" \n",
" if plot:\n",
" fig = pyplot.figure()\n",
" ax = Axes3D(fig)\n",
" ax.scatter(X[0],X[1],X[2],alpha=0.1)\n",
" ax.scatter(S[0],S[1],S[2])\n",
" pyplot.show()\n",
" return S, inds"
]
},
{
"cell_type": "code",
"execution_count": 127,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(414, 7)"
]
},
"execution_count": 127,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fr_pca_simpl, inds_simpl = radial_distance(pd.DataFrame(firing_rates_in_trials_pca.reshape((400 * 50, -1))), 0.025)\n",
"fr_pca_simpl.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Plots"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(400, 2)"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"param_corr = stim_val['pair'] # [np.array(inds_simpl) // 50]\n",
"param_corr.shape"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"avg_firing_rates_pca_ = avg_firing_rates_pca.reshape((-1, N_COMP))"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAegAAAIICAYAAACl/H0TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddZwV1fvH3/duF7t0d0qnYpDSIKGCiIqB2KIiiqLYXxEwwcBCURBREKRTurtZcsll2e7dW5/fH7Msd+8GHfqb9+u1r7t35pwzZ86dmWfOc56wSBImJiYmJiYmNxTW690BExMTExMTk9yYAtrExMTExOQGxBTQJiYmJiYmNyCmgDYxMTExMbkBMQW0iYmJiYnJDYgpoE1MTExMTG5ATAFtYmJiYmJyA2IKaBOTG4BKlSoREBBAcHAwJUuW5JFHHiElJQWABQsW0LJlS0JCQihevDitWrVi5syZOeovW7YMi8XCyJEjr0f3TUxMrgKmgDYxuUGYNWsWKSkpbNmyhU2bNvHBBx8wdepUevfuTf/+/Tlx4gRRUVG89957zJo1K0fdCRMmUKRIEX755Zfr1HsTE5MrjSmgTUxuMMqWLUvnzp3ZuXMngwcPZvjw4Tz++OOEhoZitVpp1aoV33//fXb51NRUpk6dyldffcWBAwfYtGnTdey9iYnJlcIU0CYmNxjHjx9n7ty5BAYGcvz4ce69994Cy//1118EBwfTu3dvOnbsyIQJE65RT01MTK4mpoA2MblB6NmzJ2FhYdxxxx20atWKF198EYDSpUsXWG/ChAncd999eHl50a9fP37//Xfsdvs16LGJicnVxBTQJiY3CDNmzCAhIYGjR4/y9ddfU7RoUQAiIyPzrXP8+HGWLl3KAw88AECPHj3IyMhgzpw516TPJiYmVw9TQJuY3KDUrFmT8uXLM23atHzL/Prrr7hcLu666y5KlSpFlSpVyMjIMNXcJib/AUwBbWJyg2KxWPj00095//33+emnn0hKSsLlcrFq1SqeeOIJwFBvv/3222zbti37b9q0acydO5fY2NjrfAYmJiaXgymgTUxuYO69916mTJnC+PHjKVOmDCVLluTNN9+kR48erFu3jqNHj/Lss89SqlSp7L/u3btTrVo1Jk+efL27b2JichlYJOl6d8LExMTExMQkJ+YM2sTExMTE5AbEFNAmJiYmJiY3IKaANjExMTExuQExBbSJiYmJickNiCmgTUxMTExMbkBMAW1iYmJiYnIDYgpoExMTExOTGxBTQJuYmJiYmNyAmALaxMTExMTkBsQU0CYmJiYmJjcgpoA2MTExMTG5ATEFtImJiYmJyQ2IKaBNTExMTExuQEwBbWJiYmJicgNiCmgTExMTE5MbEFNAm5iYmJiY3ICYAtrExMTExOQGxBTQJiYmJiYmNyCmgDYxMTExMbkBMQW0iYmJiYnJDYgpoE1MTExMTG5ATAFtYmJiYmJyA2IKaBMTExMTkxsQU0CbmJiYmJjcgJgC2sTExMTE5AbEFNAmJiYmJiY3IKaANjExMTExuQExBbSJiYmJickNiCmgTUxMTExMbkBMAW1iYmJiYnIDYgpoExMTExOTGxBTQJuYmJiYmNyAmALaxMTExMTkBsQU0CYmJiYmJjcgpoA2MTExMTG5ATEFtMkl4+XlRcOGDalbty69e/cmLS0NgNOnT9O3b1+qVq1KkyZN6NKlC/v37wegU6dOhIWF0a1bt+vZ9X8tFzvm27Zt49Zbb6VOnTrUr1+fKVOmXOcz+HdxseN99OhRGjduTMOGDalTpw7jxo27zmfw7+NSnisASUlJlCtXjueee+56df3KIxOTSyQoKCj7/379+umTTz6Ry+VS8+bN9c0332Tv27Ztm1asWCFJWrx4sWbOnKmuXbte8/7+F7jYMQ8PD9f+/fslSSdPnlSpUqUUHx9/rbv9r+VixzszM1MZGRmSpOTkZFWsWFEnT5685v3+N3MpzxVJGjRokO6//349++yz17S/VxPv6/2CYPLfoEWLFuzYsYOlS5fi4+PDU089lb2vQYMG2f/feeedLFu27Dr08L/HhY75WcqUKUOJEiWIjo4mLCzsGvb0v8HFjndmZiYul+tadvE/x4WO+ebNm4mKiqJTp05s2rTpenT1qmCquE0uG4fDwbx586hXrx67du2iSZMm17tL/3kuZcw3bNiAzWajatWq16CH/y0uZryPHz9O/fr1KV++PEOHDqVMmTLXsKf/HS50zF0uFy+//DIff/zxNe7h1ccU0CaXTHp6Og0bNqRp06ZUqFCBAQMGXO8u/ee51DGPjIzkoYce4qeffsJqNW/7C+VSxrt8+fLs2LGDgwcPMmHCBKKioq5BT/87XOyYf/3113Tp0oVy5cpdox5eO0wVt8klExAQwLZt23Jsq1OnDlOnTr0+Hfp/wKWMeVJSEl27duV///sfzZs3v8o9/G9xOdd4mTJlqFu3LitXruTee++9Sj3873GxY7527VpWrlzJ119/TUpKCjabjeDgYD766KNr0Nuri/kqbXJFadu2LZmZmXz33XfZ23bs2MHKlSuvY6/+2xQ05jabjV69etG/f39TSFwhChrvEydOkJ6eDkB8fDyrVq2iZs2a16ur/xkKGvNJkyZx7NgxIiIi+Pjjj+nfv/9/QjiDKaBNrjAWi4Xp06ezePFiqlatSp06dXj99dcpVaoUYBh99O7dmyVLllCuXDkWLFhwnXv876egMf/jjz9YsWIFP//8Mw0bNqRhw4a5ZicmF0dB4713715uueUWGjRoQKtWrRgyZAj16tW73l3+13O+58p/FYskXe9OmJiYmJiYmOTEnEGbmJiYmJjcgJgC2sTExMTE5AbkqlhxFytWjEqVKl2Npv+zREREEBMTc8n1zTG/eC5nzM3xvnjM8b62mM+Ua8/ljrknV0VAV6pU6T8VzeVa0LRp08uqb475xXM5Y26O98Vjjve1xXymXHsud8w9+dequONSbXy7/BBxqbYc/5vcGMQRzUvcz1bWAmDDxkwmEU9srrLTWMxwxuLCDIt4OWxiN8/xIYkkX3CdJBKYySSOcogX6csuNl/FHl49jhHJ07zP54zkf7xEHDHMZBI2Mq9310z+BRxgNyuYn+c+GzbeYCBzmIIQ7/INvzPvmvTrXxuoZMKaI3yx5CBpNgdg4YslB0izOXmpfY3r3TUTYCtrmcPvBFOIRtzKfP5kCA/Sn0GUohWhBNObDgAM4wv2c5SnuY8MbFSkNF54Xecz+PfxP75nBv8QRyI/8i4B+J+3zo98zDf8j948zlymUJry1OXfF6p1OksYx58Uxk4hDuHAxiS+xoWLnjx0vbtncoPzDD05ykFWcQoHXoQSTBCBAERyjD/5gXB2cCudeIdvqEhpggnkKKd4lvuvWr/+tQIaLNmf6TYHQPanybXlIHtYwgT6MYQQigPQhm6MZwENMSJXtaAT/RnE3QygDg/mENB/M4bjnGYze+jOIN7iSd7l2et2Pv9GFrKGGfxDaYoxmXk8Sk/ac+t56/XiYVJIYiBD6cg9JBLPTjZRj9yqujiOksAxqtDiapzCZTGQe3ifb4glmXhq0ZxeWPGiJZ3zLJ9CDCfYTE06YMl+lpj8lznAP5SgFqHkjo3+KqMJZwdOvCnLndxKA9bwKwAVqcZkVlGWSngj3qAnPbibngzhFGd4kG6EEnJV+vyvEdBxqTb+3HSc3k3LUyTIl+4Ny7DjRALdG5Zh5rZTAAT4eudZ1uTKIcQ2plCephSjGgAvcS/h7CWZbQzBCDxixcodWQIYoDBFeYPPmc4ExjGE2tTJ3leLytSiMvs4Qn1q0Jz62fs+ZiXFCKQTNdjOaTpQ7T//QN3ICT5gKZ/ShaoUvaA6VShHA2rwLH3xwos2NMu3rBDTmUAtGlCbRgxnDAC++NKcEpSlEks5kqveeO4ikp28yVG88CGchTSmH174XNqJXkECCaAwe7ERQC1aEUQlujKUb9nGITYzisewkM4hltOYfkzjKXYwjaf5h2q0ud7dN7lKJBDHTCZyM434njupQiueZVmucu3pSSUKkcAuWtIk1/3ThNt
"text/plain": [
"<Figure size 576x576 with 15 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"ncomp_disp = 5\n",
"fig = plt.figure(figsize=(8,8))\n",
"for j in range(ncomp_disp):\n",
" for i in range(j+1):\n",
" ax = fig.add_subplot(ncomp_disp,ncomp_disp, j + ncomp_disp*i + 1)\n",
" if i == j:\n",
" ax.scatter(\n",
" # param_corr[:, 0],\n",
" stim_val['pair'].reshape((-1, 2))[:, 0],\n",
" avg_firing_rates_pca_[:, i], s=1)\n",
" ax.set(xlabel='stim', ylabel='PC%d'%i)\n",
" else:\n",
" ax.scatter(avg_firing_rates_pca_[:, j], avg_firing_rates_pca_[:, i], s=1, c=stim_val['pair'].reshape((-1, 2))[:, 0], cmap='hsv')\n",
" \n",
" ax.set(xticks=[], yticks=[])\n",
" \n",
" if i==0 and j>0:\n",
" ax.set(xlabel='PC%d'%j)\n",
" ax.xaxis.set_label_position('top') \n",
"\n",
" if j==ncomp_disp-1 and i<ncomp_disp-1:\n",
" ax.set(ylabel='PC%d'%i)\n",
" ax.yaxis.set_label_position('right') \n",
"\n",
"fig.set_facecolor('white')\n",
"fig.suptitle('PCA')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### UMAP"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from umap import UMAP"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"ncomp_umap = 4\n",
"embed = UMAP(n_components=ncomp_umap, n_neighbors=30, metric='euclidean').fit_transform(avg_firing_rates_pca_)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"param_corr[:, 0].max()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "723e6a2e25e34392954a050ad7ba10a6",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABaAAAALQCAYAAABmJdeHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5hcV33/8fe5d8pW7UqrXmzLstxtMDbGxvQeSggtoQUISSiBQIAkPwiBAAmBEBICKRBCr6GFbnCCMQaMjY1xt5F7kSWrrdqWafee3x+zK0vyyiq7s/X98qPH2tk7d87MjmbP+dxzzjfEGJEkSZIkSZIkaaIlU90ASZIkSZIkSdLsZAAtSZIkSZIkSWoJA2hJkiRJkiRJUksYQEuSJEmSJEmSWsIAWpIkSZIkSZLUEgbQkiRJkiRJkqSWMICWJEmSJEmSJLWEAbQkSZIkSZIkqSUMoCVJkiRJkiRJLWEALUmSJEmSJElqCQNoSZIkSZIkSVJLGEBLkiRJkiRJklrCAFqSJEmSJEmS1BIG0JIkSZIkSZKkljCAliRJ0owXQoghhOP2u+1dIYQvjPz9cSPHfHO/Yx4ycvtP9rs9hBBuDyHcOMZj/SSEUAkhDIQQtoYQ/ieEsOwA7fpACOGeEMKuEMJdIYS/2ut7x4w89sDIn00hhO+FEJ48jpdCkiRJmlYMoCVJkjRXbAHODSH07XXby4Gbxzj2McBi4NgQwsPH+P7rY4xdwPFAL/ChAzzmJ4ETY4zzgEcCLwkhPHe/Y3pHzvUQ4P+Ab4YQXnFoT0mSJEma3gygJUmSNFfUgG8BLwQIIaTA7wFfHOPYlwPfBs4f+fuYYoz9wDeAUw/w/XUxxsG9bsqB4w5w7H0xxg8D7wL+IYRgX12SJEkznp1aSZIkzSWfA1428venAtcDG/Y+IITQATyfZjD9ReCFIYTSWCcLISwEngdcdaAHDCG8NYQwAKwHOoEvHaSN/0Nz9vUJB3sykiRJ0nRnAC1JkqQ5I8b4C2BBCOEEmkH058Y47LlAFfhf4PtAEXjGfsd8JISwA7gG2Ai8+UEe8/1AN/Aw4PPAzoM0czQQX3CQ4yRJkqRpzwBakiRJs0FGMyjeWxGoj3Hs54HXA48HvjnG918OfDXG2IgxVmhusbH/NhxviDH2xhhXxBhfEmPc8mCNi01XAcPAuw/yXFaM/L//IMdJkiRJ015hqhsgSZIkTYC7gWOAm/a6bTVjFxj8PHAr8LkY41AIYc83QggrgScAZ4cQnjdycwfQFkJYGGPcOs52FoA1BznmOcBmYN04H0uSJEmacs6AliRJ0mzwFeCvQwgrQwhJCOFJwLOAr+9/YIzxDuCxwNvHOM/v0wytTwAeOvLneJr7N7/ocBo00o5XhxDmh6azgdcBFx7g+CUhhNcDfwO8LcaYH87jSZIkSdORM6AlSZI0G7xn5M/PgfnAbcBLYozXj3VwjPHnBzjPy4F/jzHet/eNIYSPjXzvXw+zXc8B3geUaO7t/K9jnGNHaE7DHgR+BbwgxvjDw3wcSZIkaVoKMcapboMkSZIkSZIkaRZyCw5JkiRJkiRJUksYQEuSJEmSJEmSWsIAWpIkSZIkSZLUEgbQkiRJkiRJkqSWMICWJEmSJEmSJLWEAbQkSZIkSZIkqSUMoCVJkiRJkiRJLWEALUmSJEmSJElqCQNoSZIkSZIkSVJLGEBLkiRJkiRJklrCAFqSJEmSJEmS1BIG0JIkSZIkSZKkljCAliRJkiRJkiS1hAG0JEmSJEmSJKklDKAlSZIkSZIkSS1hAC1JkiRJkiRJagkDaEmSJEmSJElSSxhAS5IkSZIkSZJawgBakiRJkiRJktQSBtCSJEmSJEmSpJYwgJYkSZIkSZIktYQBtCRJkiRJkiSpJQygJUmSJEmSJEktYQAtSZIkSZIkSWoJA2hJkiRJkiRJUksYQEuSJEmSJEmSWsIAWpIkSZIkSZLUEgbQkiRJkiRJkqSWMICWJEmSJEmSJLWEAbQkSZIkSZIkqSUMoCVJkiRJkiRJLWEALUmSJEmSJElqCQNoSZIkSZIkSVJLGEBLkiRJkiRJklrCAFqSJEmSJEmS1BIG0JIkSZIkSZKkljCAliRJkiRJkiS1hAG0JEmSJEmSJKklDKAlSZIkSZIkSS1hAC1JkiRJkiRJagkDaEmSJEmSJElSSxhAS5IkSZIkSZJawgBakiRJkiRJktQSBtCSJEmSJEmSpJYwgJYkSZIkSZIktYQBtCRJkiRJkiSpJQygJUmSJEmSJEktYQAtSZIkSZIkSWoJA2hJkiRJkiRJUksYQEuSJEmSJEmSWsIAWpIkSZIkSZLUEgbQkiRJkiRJkqSWMICWJEmSJEmSJLWEAbQkSZIkSZIkqSUMoCVJkiRJkiRJLWEALUmSJEmSJElqCQNoSZIkSZIkSVJLGEBrSoQQPhVC2BxCuP4A3w8hhI+EEG4NIVwbQnjYZLdRkiRJkiRJ0vgYQGuqfAZ42oN8/7eAtSN/XgV8dBLaJEmSJEmSJGkCGUBrSsQYfwr0P8ghzwY+F5suA3pDCMsmp3WSJEmSJEmSJoIBtKarFcA9e329fuQ2SZIkSZIkSTNEYaobII1XCOFVNLfpoLOz88wTTzxxilskSZIkSZI0e1x55ZVbY4yLprodmpkMoDVd3Qus2uvrlSO3PUCM8ePAxwHOOuus+Ktf/ar1rZMkSZIkSZojQgh3TXUbNHO5BYemq+8ALwtN5wA7Y4wbp7pRkiRJkiRJkg6dM6A1JUIIXwYeBywMIawH/gYoAsQYPwacDzwduBUYAv5galoqSZIkSZIk6UgZQGtKxBhfdJDvR+B1k9QcSZIkSZIkSS3gFhySJEmSJEmSpJYwgJYkSZIkSZIktYQBtCRJkiRJkiSpJQygJUmSJEmSJEktYQAtSZIkSZIkSWoJA2hJkiRJkiRJUksYQEuSJEmSJEmSWsIAWpIkSZIkSZLUEgbQkiRJkiRJkqSWMICWJEmSJEmSJLWEAbQkSZIkSZIkqSUMoCVJkiRJkiRJLWEALUmSJEmSJElqCQNoSZIkSZIkSVJLhBjjVLdBmki+oSVJkiRJkiZQCOHKGONZU90OzUzOgJYkSZIkSZIktYQBtCRJkiRJkiSpJQygJUmSJEmSJEktYQAtSZIkSZIkSWoJA2hJkiRJkiRJUksYQEuSJEmSJEmSWsIAWpIkSZIkSZLUEgbQkiRJkiRJkqSWMICWJEmSJEmSJLWEAbQkSZIkSZIkqSUMoCVJkiRJkiRJLWEALUmSJEmSJElqCQNoSZIkSZIkSVJLGEBLkiRJkiRJklrCAFqSJEmSJEmS1BIG0JIkSZIkSZKkljCAliRJkiRJkiS1hAG0JEmSJEmSJKklDKAlSZIkSZIkSS1hAC1JkiRJkiRJagkDaEmSJEmSJElSSxhAS5IkSZIkSZJawgBakiRJkiRJktQSBtCSJEmSJEmSpJYwgJYkSZIkSZIktYQBtCRJkiRJkiSpJQygJUmSJEmSJEktYQAtSZIkSZIkSWoJA2hJkiRJkiRJUksYQEuSJEmSJEmSWsIAWpIkSZIkSZLUEgbQkiRJkiRJkqSWMICWJEmSJEmSJLWEAbQkSZIkSZIkqSUMoCVJkiRJkiRJLWEALUmSJEmSJElqCQNoSZIkSZIkSVJLFKa6AZKkyRVjpFqtkiQJaZqSJAkhhKluliRJ0qyW5znVapVCobCnDyZJ0lxgAC1Jc0ij0aDRaFCpVPbcFkKgWCzuMxgykJYkSZoYMcZ9+mCj/awkSR7QB5MkaTYygJakOWDvgU8IgTRNiTESQiDGSK1Wo1qtAvcPhorFImmaEkIwkJYkSToCo/2sPM8B9vStYox7VqXt3wczkJYkzTYG0JI0y+V5Tr1eJ8/zMcPk0UB61N6BdAiBJEkoFAoG0pIkSYdh9OL/6EX/ve3fnxorkE7TdE//q1Ao2P+SJM1YBtCSNEvFGMmyjHq9DnDIs2j2DqRjjADUajVqtdqe8+wdSDs7R5Ik6X77rzwb7SuN9qvGMlYgnef5PtumjQbSozOkDaQlSTOFAbQkzUIxRur1OlmWjWv
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Unhandled message type set_device_pixel_ratio. {'device_pixel_ratio': 0.8333333134651184, 'type': 'set_device_pixel_ratio'}\n",
"Unhandled message type set_device_pixel_ratio. {'device_pixel_ratio': 0.8333333134651184, 'type': 'set_device_pixel_ratio'}\n"
]
}
],
"source": [
"from mpl_toolkits import mplot3d\n",
"from mpl_toolkits.mplot3d import Axes3D\n",
"\n",
"%matplotlib inline\n",
"%matplotlib widget\n",
"\n",
"x, y, z, u = embed[:,0], embed[:,1], embed[:,2], embed[:,3] \n",
"\n",
"fig, ax = plt.subplots(1, 1, figsize=(20, 10))\n",
"# ax.scatter3D(x, y, z, c=np.array([param_corr[:, 0] / 180, [0] * param_corr.shape[0], param_corr[:, 1] / 360]).swapaxes(0, 1))\n",
"ax = fig.add_subplot(1, 2, 1, projection='3d')\n",
"ax.scatter3D(x, y, z, c=param_corr[:, 0], cmap=\"hsv\")\n",
"ax.set(xlabel=\"U0\", ylabel=\"U1\", zlabel=\"U2\", xticks=[], yticks=[], zticks=[])\n",
"ax = fig.add_subplot(1, 2, 2, projection='3d')\n",
"ax.scatter3D(x, y, z, c=param_corr[:, 1], cmap=\"hsv\")\n",
"ax.set(xlabel=\"U0\", ylabel=\"U1\", zlabel=\"U2\", xticks=[], yticks=[], zticks=[])\n",
"# ax = fig.add_subplot(2, 2, 3, projection='3d')\n",
"# ax.scatter3D(x, y, u, c=param_corr[:, 0], cmap=\"hsv\")\n",
"# ax.set(xlabel=\"U0\", ylabel=\"U1\", zlabel=\"U3\", xticks=[], yticks=[], zticks=[])\n",
"# ax = fig.add_subplot(2, 2, 4, projection='3d')\n",
"# ax.scatter3D(x, y, u, c=param_corr[:, 1], cmap=\"hsv\")\n",
"# ax.set(xlabel=\"U0\", ylabel=\"U1\", zlabel=\"U3\", xticks=[], yticks=[], zticks=[])\n",
"fig.suptitle('UMAP 3D')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cc2c2edbd8b8491ca20366c9839f92dc",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABaAAAALQCAYAAABmJdeHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xkV3n/8c85905Rr9u77XXv3TRjTDMYYkOAYAglhBZIQhKSAEmAJOQXEhJSCIFQTYcQTDcYY2xccMEd2+u+9va+klajafee5/fHSNqm3ZV2Narfd14bLOnOzJ3RjOac75zzPM7MEBEREREREREREREZb36yT0BEREREREREREREZiYF0CIiIiIiIiIiIiJSFwqgRURERERERERERKQuFECLiIiIiIiIiIiISF0ogBYRERERERERERGRulAALSIiIiIiIiIiIiJ1oQBaREREREREREREROpCAbSIiIiIiIiIiIiI1IUCaBERERERERERERGpCwXQIiIiIiIiIiIiIlIXCqBFREREREREREREpC4UQIuIiIiIiIiIiIhIXSiAFhEREREREREREZG6UAAtIiIiIiIiIiIiInWhAFpEREREpj3nnDnnjtnnex92zn118L+fO3jMd/c55rTB79+wz/edc+5J59xDI9zWDc65knOu3zm3zTl3lXNuwQHO65+dc2udc33Ouaedcx/Y42fLB2+7f/DfZufcj5xzLziCh0JEREREZEpRAC0iIiIis8VW4ALnXNce33sj8OgIxz4HmAsc5Zw7Z4Sfv9vMmoFjgXbg3w5wm58HjjezVuAZwOucc6/Y55j2wes6DbgW+K5z7k2ju0siIiIiIlObAmgRERERmS0qwPeA3wFwzkXAa4CvjXDsG4HvA1cP/veIzGwH8B3g5AP8/BEzK+zxrQAcc4BjN5nZfwAfBv7JOaexuoiIiIhMexrUioiIiMhs8mXgDYP//SLgAWDDngc45xqB36YWTH8N+B3nXHakK3POdQOvBO450A06597nnOsH1gFNwNcPcY5XUVt9fdyh7oyIiIiIyFSnAFpEREREZg0z+xXQ6Zw7jloQ/eURDnsFUAZ+BvwYyAAv3eeY/3TO9QD3ARuBPz3IbX4UaAHOBL4C9B7iNIcC8c5DHCciIiIiMuUpgBYRERGRmSClFhTvKQNURzj2K8C7gYuA747w8zcC/2tmiZmVqJXY2LcMxx+ZWbuZLTKz15nZ1oOdnNXcAxSBvz3EfVk0+L87DnGciIiIiMiUF0/2CYiIiIiIjIM1wHJg1R7fW8HIDQa/AjwOfNnMBpxzwz9wzi0Gngec65x75eC3G4G8c67bzLYd4XnGwNGHOOZyYAvwyBHeloiIiIjIpNMKaBERERGZCb4F/LVzbrFzzjvnng+8DPi/fQ80s9XAhcBfjXA9v0sttD4OOH3w37HU6je/diwnNHgeb3fOdbiac4F3Adcd4Ph5zrl3Ax8C3m9mYSy3JyIiIiIyFWkFtIiIiIjMBH83+O9moAN4AnidmT0w0sFmdvMBrueNwCfNbNOe33TOfXrwZ58Y43ldDvwjkKVW2/kTI1xHj6stwy4AdwKvMrOfjvF2RERERESmJGdmk30OIiIiIiIiIiIiIjIDqQSHiIiIiIiIiIiIiNSFAmgRERERERERERERqQsF0CIiIiIiIiIiIiJSFwqgRURERERERERERKQuFECLiIiIiIiIiIiISF0ogBYRERERERERERGRulAALSIiIiIiIiIiIiJ1oQBaREREREREREREROpCAbSIiIiIiIiIiIiI1IUCaBERERERERERERGpCwXQIiIiIiIiIiIiIlIXCqBFREREREREREREpC4UQIuIiIiIiIiIiIhIXSiAFhEREREREREREZG6UAAtIiIiIiIiIiIiInWhAFpERERERERERERE6kIBtIiIiIiIiIiIiIjUhQJoEREREREREREREakLBdAiIiIiIiIiIiIiUhcKoEVERERERERERESkLhRAi4iIiIiIiIiIiEhdKIAWERERERERERERkbpQAC0iIiIiIiIiIiIidaEAWkRERERERERERETqQgG0iIiIiIiIiIiIiNSFAmgRERERERERERERqQsF0CIiIiIiIiIiIiJSFwqgRURERERERERERKQuFECLiIiIiIiIiIiISF0ogBYRERERERERERGRulAALSIiIiIiIiIiIiJ1oQBaREREREREREREROpCAbSIiIiIiIiIiIiI1IUCaBERERERERERERGpCwXQIiIiIiIiIiIiIlIXCqBFREREREREREREpC4UQIuIiIiIiIiIiIhIXSiAFhEREREREREREZG6UAAtIiIiIiIiIiIiInWhAFpERERERERERERE6kIBtIiIiIiIiIiIiIjUhQJoEREREREREREREakLBdAiIiIiIiIiIiIiUhcKoEVERERERERERESkLhRAi4iIiIiIiIiIiEhdKIAWERERERERERERkbpQAC0iIiIiIiIiIiIidaEAWkRERERERERERETqQgG0iIiIiIiIiIiIiNSFAmgRERERERERERERqQsF0CIiIiIiIiIiIiJSFwqgRURERERERERERKQuFECLiIiIiIiIiIiISF0ogBYRERERERERERGRulAALSIiIiIiIiIiIiJ1oQBaREREREREREREROpCAbSIiIiIiIiIiIiI1IUCaJkUzrkvOOe2OOceOMDPnXPuP51zjzvn7nfOnTnR5ygiIiIiIiIiIiJHRgG0TJYrgRcf5OeXACsH/70N+NQEnJOIiIiIiIiIiIiMIwXQMinM7EZgx0EO+S3gy1ZzG9DunFswMWcnIiIiIiIiIiIi40EBtExVi4C1e3y9bvB7IiIiIiIiIiIiMk3Ek30CIkfKOfc2amU6aGpqOuv444+f5DMSEREREREREZk57rrrrm1mNmeyz0OmJwXQMlWtB5bs8fXiwe/tx8w+A3wG4Oyzz7Y777yz/mcnIiIiIiIiIjJLOOeenuxzkOlLJThkqvoB8AZXcz7Qa2YbJ/ukREREREREREREZPS0AlomhXPuG8BzgW7n3DrgQ0AGwMw+DVwNvAR4HBgA3jw5ZyoiIiIiIiIiIiKHSwG0TAoze+0hfm7AuybodERERERERERERKQOVIJDREREREREREREROpCAbSIiIiIiIiIiIiI1IUCaBERERERERERERGpCwXQIiIiIiIiIiIiIlIXCqBFREREREREREREpC4UQIuIiIiIiIiIiIhIXSiAFhEREREREREREZG6UAAtIiIiIiIiIiIiInWhAFpERERERERERERE6kIBtIiIiIiIiIiIiIjUhQJoEREREREREREREakLBdAiIiIiIiIiIiIiUhcKoEVERERERERERESkLhRAi4iIiIiIiIiIiEhdODOb7HMQGU96QouIiIiIiIiIjCPn3F1mdvZkn4dMT1oBLSIiIiIiIiIiIiJ1oQBaREREREREREREROpCAbSIiIiIiIiIiIiI1IUCaBERERERERERERGpCwXQIiIiIiIiIiIiIlIXCqBFREREREREREREpC4UQIuIiIiIiIiIiIhIXSiAFhEREREREREREZG6UAAtIiIiIiIiIiIiInWhAFpERERERERERERE6kIBtIiIiIiIiIiIiIjUhQJoEREREREREREREakLBdAiIiIiIiIiIiIiUhcKoEVERERERERERESkLhRAi4iIiIiIiIiIiEhdKIAWERERERERERERkbpQAC0iIiIiIiIiIiIidaEAWkRERERERERERETqQgG0iIiIiIiIiIiIiNSFAmgRERERERERERERqQsF0CIiIiIiIiIiIiJSFwqgRURERERERERERKQuFECLiIiIiIiIiIiISF0ogBYRERERERERERGRulAALSIiIiIiIiIiIiJ1oQBaREREREREREREROpCAbSIiIiIiIiIiIiI1IUCaBERERERERERERGpCwXQIiIiIiIiIiIiIlIXCqBFREREREREREREpC4UQIuIiIiIiIiIiIhIXSiAFhEREREREREREZG6UAAtIiIiIiI
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Unhandled message type set_device_pixel_ratio. {'device_pixel_ratio': 0.8333333134651184, 'type': 'set_device_pixel_ratio'}\n",
"Unhandled message type set_device_pixel_ratio. {'device_pixel_ratio': 0.8333333134651184, 'type': 'set_device_pixel_ratio'}\n"
]
}
],
"source": [
"fig, ax = plt.subplots(1, 1, figsize=(20, 10))\n",
"# ax.scatter3D(x, y, z, c=np.array([param_corr[:, 0] / 180, [0] * param_corr.shape[0], param_corr[:, 1] / 360]).swapaxes(0, 1))\n",
"ax = fig.add_subplot(1, 2, 1, projection='3d')\n",
"ax.scatter3D(x, y, u, c=param_corr[:, 0], cmap=\"hsv\")\n",
"ax.set(xlabel=\"U0\", ylabel=\"U1\", zlabel=\"U3\", xticks=[], yticks=[], zticks=[])\n",
"ax = fig.add_subplot(1, 2, 2, projection='3d')\n",
"ax.scatter3D(x, y, u, c=param_corr[:, 1], cmap=\"hsv\")\n",
"ax.set(xlabel=\"U0\", ylabel=\"U1\", zlabel=\"U3\", xticks=[], yticks=[], zticks=[])\n",
"\n",
"fig.suptitle('UMAP 3D')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Decoding"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"import decoding"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbgAAAGwCAYAAADbmXDeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQVUlEQVR4nO3deXhTZdoG8DtJ27TpEmihe1lKkb0tIEtxoZUii4JlQB2dgYLiCs4gbuCMAvop6iigAsMgKuLKjgqIQqEii7KUVUCBAkmhC5TuLV2S8/1xaNq0SdckJ8v9u65cQ968J3maqbl7Tt5FJgiCACIiIicjl7oAIiIia2DAERGRU2LAERGRU2LAERGRU2LAERGRU2LAERGRU2LAERGRU3KTugBb0+v1uHLlCnx9fSGTyaQuh4iImkkQBBQVFSE0NBRyufnzNJcLuCtXriAiIkLqMoiIqJW0Wi3Cw8PNPu5yAefr6wtAfGP8/PwkroaIiJoiIyMD99xzDy5evIgOHTpAo9EYPs/NcbmAq74s6efnx4AjInIQHh4eqKysRGRkJL7//nv06tWr0a+ZXC7giIjI8URFRSE1NRVKpRJqtbpJx3AUJRER2SWtVovt27cb7kdFRTVrDAUDjoiI7I5Wq0V8fDzuvfdeo5BrDgYcERHZlepwS09PR3h4OLp3796i52HAERGR3agdbpGRkUhNTW3x1C4GHBER2QVLhhvAgCMiIjuQk5Nj0XADJA64+fPnY8CAAfD19UVgYCCSkpLwxx9/NHrc2rVr0b17d3h6eqJPnz7YunWrDaolIiJrCQgIwJAhQywWboDEAffzzz9j2rRp+PXXX7F9+3ZUVlbi7rvvRklJidlj9u3bh4ceegiPPvoojhw5gqSkJCQlJeHkyZM2rJyIiCxJoVBg5cqV2L9/v8WWU5QJgiBY5Jks4OrVqwgMDMTPP/+MO++802SfBx98ECUlJdi8ebOhbfDgwYiNjcWyZcsafY3CwkKo1WoUFBRwJRMiIglptVosXrwYb775JhQKRZOPa+rnuF2tZFJQUAAA8Pf3N9tn//79mDlzplHbiBEjsGnTJpP9y8vLUV5ebrhfWFjY+kKJiKhVag8oAYC3337b4q9hN4NM9Ho9ZsyYgdtuuw29e/c22y8rKwtBQUFGbUFBQcjKyjLZf/78+VCr1YYbdxIgIpJW3dGS06dPt8rr2E3ATZs2DSdPnsQ333xj0eedPXs2CgoKDDetVmvR529MmiYPi3eexfrDGSir0Nn0tYmI7I2lpwI0xC4uUU6fPh2bN2/G7t27G9zbBwCCg4ORnZ1t1JadnY3g4GCT/ZVKJZRKpcVqbY43t57G8t3phvsf7DyLtU/EIdDPU5J6iIikZMtwAyQOOEEQ8Mwzz2Djxo1ITU1F586dGz0mLi4OKSkpmDFjhqFt+/btiIuLa9Zrl5SUmPxSU6FQwNPT06ifOXK5HF5eXib7ns8pxrIdp2o6y2S4lAssTT2PuWN7obS0FObG98hkMqhUKsP95vQtKyuDXq83W7O3t3eL+t64cQM6nfkz0Ob0ValUhm0uysvLUVVVZZG+Xl5eht19KyoqUFlZaZG+np6eht+V5vStrKxERUWF2b5KpRJubm7N7ltVVWX0vXJdHh4ecHd3b3ZfnU6HGzdumO3r7u4ODw+PZvfV6/UoKyuzSF83NzfDH6yCIKC0tNQifZvz372lPiMa6+tsnxFKpRIjR45Eeno6OnXqhK1bt8Lf39/ke9LYf/cNvY9GBAk99dRTglqtFlJTU4XMzEzDrbS01NBn4sSJwqxZswz39+7dK7i5uQnvvvuucPr0aWHOnDmCu7u7cOLEiSa9ZkFBgQDA7G306NFG/VUqldm+Q4cONerbrl07s309grsKHV/aLIz58BdBEAShY8eOZvv27NnT6Hl79uxptm/Hjh2N+t56661m+7Zr186o79ChQ832ValURn1Hjx7d4PtW24QJExrsW1xcbOibnJzcYN+cnBxD36effrrBvhcuXDD0ff755xvse/LkSUPfOXPmNNj3wIEDhr7vvPNOg3137dpl6Lt48eIG+27evNnQ99NPP22w75o1awx916xZ02DfTz/91NB38+bNDfZdvHixoe+uXbsa7PvOO+8Y+h44cKDBvnPmzDH0PXnyZIN9n3/+eUPfCxcuNNj36aefNvTNyclpsG9ycrKhb3FxcYN9J0yYYPQ73FBfa31G3HrrrUZ9nfEzYuvWrULPnj0b7dvUz4iCggKhIZJ+B/ff//4XBQUFiI+PR0hIiOG2evVqQx+NRoPMzEzD/SFDhuCrr77C8uXLERMTg3Xr1mHTpk0NDkyxJ53beTfeiYjICY0aNQrHjh0zOqO0JruaB2cL1fMnrly5YnL+hCUvPzy26hD2nL0m3pHJ4OutwrqnhqBHiJ/TXX7gJcr6fXmJkpcoXf0SZUZGBqZOnYolS5YgOjq6wb61NfbffWFhIUJDQxudB+eyAWeLid7lVTqsPqjFnrPXENrGCxPjOqJLex+rviYRkT2oPaBk6NChSE1NtdhzN/VznAFHREQWZe3Rkk39HLebeXBEROT4bD0VoCEMOCIisgh7CjeAAUdERBby7LPP2k24AXaykgkRETm+5cuXAwAWLlwoebgBDDgiImqF0tJSwzQEf39/rFu3TuKKavASJRERtYhGo0F0dDSWLFkidSkmMeCIiKjZNBoNEhIScP78eSxcuLDBifRSYcAREVGzVIdb9YCSXbt22Wz5reZgwBERUZPVDTd7GC1pDgOOiIiaxJHCDWDAERFRE3377bcOE24ApwkQEVETPfPMMwCApKQkuw83gAFHREQNuHz5MtRqNXx8xJ1QqkPOEfASJRERmaTVanHnnXdi9OjRKC4ulrqcZuMZHBER1VN74WQAKCgoMJzFOQqewRERkRFTuwKEhYVJXVazMeCIiMjA3ra8aQ0GHBERAXCucAMYcEREdFNeXh7y8/OdItwADjIhIqKboqOjsWvXLrRt29bhww1gwBERuTStVouMjAzExcUBEEPOWfASJRGRi6r+zm348OHYv3+/1OVYHAOOiMgF1R5QEhQUhPDwcKlLsjgGHBGRi3G20ZLmMOCIiFyIq4QbwIAjInIZmZmZLhNuAEdREhG5jICAAPTq1QsAnD7cAAYcEZHL8PDwwLp165Cbm4uQkBCpy7E6XqIkInJiWq0Wb7zxBgRBACCGnCuEG8AzOCIip1V3y5t//etfEldkWzyDI7tRUVGBzMxMoLwIKM4BIH4pXlFRIXFlRI6n7mjJSZMmSV2SzfEMjuxCRUUF7p8wHicP7sauhxXo4KuDxrM3Ev6nRe/ovli7di08PDykLpPIIbjSVICGMODILuTm5uLkob1IzypEwqcyrErywqRN+5GeJwByd5f5UpyotRhuNXiJkuxCSEgIdk1th8i2MqTnCbj901Kk5wmIbCvDrq/eZ7gRNUFFRQUSExMZbjcx4MhudPBXYlWSl1HbqiQvdAhjuBE1hYeHB+bOnYtbbrnF5cMNYMCRHdEEj8KkTWVGbZO+10GjaydRRUSO56GHHsKJEydcPtwABhzZiczMTCT8a/3Ny5IK7JmiQmR7FdKvlSPhrrvE0ZVEVI9Wq8Xo0aNx5coVQxsHZIkYcGQXAgIC0Lt3b0RGRmLXodO4bWkmdh06jcjISPTu3RsBAQFSl0hkd6oHlPzwww+YOnWq1OXYHZlQPb3dRRQWFkKtVqOgoAB+fn5Sl0O1VFRU1BstmZmZiYCAAP5FSlSHK4+WbOrnOKcJkN0wtYQQR08S1efK4dYcvERJRORAGG5Nx4AjInIgTzzxBMOtiRhwREQOZMWKFRg1ahTDrQn4HRwRkZ0rLy+HUqkEAISGhmLr1q0SV+QYeAZHRGTHtFot+vTpgy+//FLqUhwOA46IyE5VDyg5e/Ys5s2bh/LycqlLcigMOCIiO1R3tGRKSorhMiU1DQOOiMjOcCqAZTDgiIjsCMPNchhwRER2ZNWqVQw3C+E0ASIiO/Lyyy8DACZNmsRwayUutkxEJLHMzEz4+/tzEEkTNfVznJcoiYgkpNFocPv
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Decoding... done\n"
]
}
],
"source": [
"# param = decoding.cohomological_parameterization(pd.DataFrame(firing_rates_in_trials_pca.reshape((400*50, -1))[::41]))\n",
"param = decoding.cohomological_parameterization(pd.DataFrame(embed))\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"pandas.core.frame.DataFrame"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(param)"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(788,)"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"param_corr[:, 0].shape"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "'c' argument must be a color, a sequence of colors, or a sequence of numbers, not decoding\n0 0.728825\n1 0.728807\n2 0.728802\n3 0.729053\n4 0.729382\n.. ...\n395 0.988458\n396 0.917262\n397 0.913100\n398 0.974053\n399 0.055629\n\n[400 rows x 1 columns]",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"File \u001b[0;32m/usr/lib/python3.10/site-packages/matplotlib/axes/_axes.py:4350\u001b[0m, in \u001b[0;36mAxes._parse_scatter_color_args\u001b[0;34m(c, edgecolors, kwargs, xsize, get_next_color_func)\u001b[0m\n\u001b[1;32m 4349\u001b[0m \u001b[39mtry\u001b[39;00m: \u001b[39m# Is 'c' acceptable as PathCollection facecolors?\u001b[39;00m\n\u001b[0;32m-> 4350\u001b[0m colors \u001b[39m=\u001b[39m mcolors\u001b[39m.\u001b[39;49mto_rgba_array(c)\n\u001b[1;32m 4351\u001b[0m \u001b[39mexcept\u001b[39;00m (\u001b[39mTypeError\u001b[39;00m, \u001b[39mValueError\u001b[39;00m) \u001b[39mas\u001b[39;00m err:\n",
"File \u001b[0;32m/usr/lib/python3.10/site-packages/matplotlib/colors.py:385\u001b[0m, in \u001b[0;36mto_rgba_array\u001b[0;34m(c, alpha)\u001b[0m\n\u001b[1;32m 384\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m--> 385\u001b[0m rgba \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39marray([to_rgba(cc) \u001b[39mfor\u001b[39;00m cc \u001b[39min\u001b[39;00m c])\n\u001b[1;32m 387\u001b[0m \u001b[39mif\u001b[39;00m alpha \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n",
"File \u001b[0;32m/usr/lib/python3.10/site-packages/matplotlib/colors.py:385\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 384\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m--> 385\u001b[0m rgba \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39marray([to_rgba(cc) \u001b[39mfor\u001b[39;00m cc \u001b[39min\u001b[39;00m c])\n\u001b[1;32m 387\u001b[0m \u001b[39mif\u001b[39;00m alpha \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n",
"File \u001b[0;32m/usr/lib/python3.10/site-packages/matplotlib/colors.py:206\u001b[0m, in \u001b[0;36mto_rgba\u001b[0;34m(c, alpha)\u001b[0m\n\u001b[1;32m 205\u001b[0m \u001b[39mif\u001b[39;00m rgba \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m: \u001b[39m# Suppress exception chaining of cache lookup failure.\u001b[39;00m\n\u001b[0;32m--> 206\u001b[0m rgba \u001b[39m=\u001b[39m _to_rgba_no_colorcycle(c, alpha)\n\u001b[1;32m 207\u001b[0m \u001b[39mtry\u001b[39;00m:\n",
"File \u001b[0;32m/usr/lib/python3.10/site-packages/matplotlib/colors.py:277\u001b[0m, in \u001b[0;36m_to_rgba_no_colorcycle\u001b[0;34m(c, alpha)\u001b[0m\n\u001b[1;32m 276\u001b[0m \u001b[39mreturn\u001b[39;00m c, c, c, alpha \u001b[39mif\u001b[39;00m alpha \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39melse\u001b[39;00m \u001b[39m1.\u001b[39m\n\u001b[0;32m--> 277\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mInvalid RGBA argument: \u001b[39m\u001b[39m{\u001b[39;00morig_c\u001b[39m!r}\u001b[39;00m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 278\u001b[0m \u001b[39m# turn 2-D array into 1-D array\u001b[39;00m\n",
"\u001b[0;31mValueError\u001b[0m: Invalid RGBA argument: 'decoding'",
"\nThe above exception was the direct cause of the following exception:\n",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m/home/ennucore/dev/amgen/exp/ProcessExp.ipynb Cell 115\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> <a href='vscode-notebook-cell:/home/ennucore/dev/amgen/exp/ProcessExp.ipynb#ch0000097?line=0'>1</a>\u001b[0m plt\u001b[39m.\u001b[39;49mscatter(param_corr[:, \u001b[39m0\u001b[39;49m], param_corr[:, \u001b[39m1\u001b[39;49m], c\u001b[39m=\u001b[39;49mparam)\n",
"File \u001b[0;32m/usr/lib/python3.10/site-packages/matplotlib/pyplot.py:3068\u001b[0m, in \u001b[0;36mscatter\u001b[0;34m(x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, edgecolors, plotnonfinite, data, **kwargs)\u001b[0m\n\u001b[1;32m 3063\u001b[0m \u001b[39m@_copy_docstring_and_deprecators\u001b[39m(Axes\u001b[39m.\u001b[39mscatter)\n\u001b[1;32m 3064\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mscatter\u001b[39m(\n\u001b[1;32m 3065\u001b[0m x, y, s\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, c\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, marker\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, cmap\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, norm\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m,\n\u001b[1;32m 3066\u001b[0m vmin\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, vmax\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, alpha\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, linewidths\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, \u001b[39m*\u001b[39m,\n\u001b[1;32m 3067\u001b[0m edgecolors\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, plotnonfinite\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m, data\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[0;32m-> 3068\u001b[0m __ret \u001b[39m=\u001b[39m gca()\u001b[39m.\u001b[39;49mscatter(\n\u001b[1;32m 3069\u001b[0m x, y, s\u001b[39m=\u001b[39;49ms, c\u001b[39m=\u001b[39;49mc, marker\u001b[39m=\u001b[39;49mmarker, cmap\u001b[39m=\u001b[39;49mcmap, norm\u001b[39m=\u001b[39;49mnorm,\n\u001b[1;32m 3070\u001b[0m vmin\u001b[39m=\u001b[39;49mvmin, vmax\u001b[39m=\u001b[39;49mvmax, alpha\u001b[39m=\u001b[39;49malpha, linewidths\u001b[39m=\u001b[39;49mlinewidths,\n\u001b[1;32m 3071\u001b[0m edgecolors\u001b[39m=\u001b[39;49medgecolors, plotnonfinite\u001b[39m=\u001b[39;49mplotnonfinite,\n\u001b[1;32m 3072\u001b[0m \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49m({\u001b[39m\"\u001b[39;49m\u001b[39mdata\u001b[39;49m\u001b[39m\"\u001b[39;49m: data} \u001b[39mif\u001b[39;49;00m data \u001b[39mis\u001b[39;49;00m \u001b[39mnot\u001b[39;49;00m \u001b[39mNone\u001b[39;49;00m \u001b[39melse\u001b[39;49;00m {}), \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 3073\u001b[0m sci(__ret)\n\u001b[1;32m 3074\u001b[0m \u001b[39mreturn\u001b[39;00m __ret\n",
"File \u001b[0;32m/usr/lib/python3.10/site-packages/matplotlib/__init__.py:1361\u001b[0m, in \u001b[0;36m_preprocess_data.<locals>.inner\u001b[0;34m(ax, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1358\u001b[0m \u001b[39m@functools\u001b[39m\u001b[39m.\u001b[39mwraps(func)\n\u001b[1;32m 1359\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39minner\u001b[39m(ax, \u001b[39m*\u001b[39margs, data\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[1;32m 1360\u001b[0m \u001b[39mif\u001b[39;00m data \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m-> 1361\u001b[0m \u001b[39mreturn\u001b[39;00m func(ax, \u001b[39m*\u001b[39;49m\u001b[39mmap\u001b[39;49m(sanitize_sequence, args), \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 1363\u001b[0m bound \u001b[39m=\u001b[39m new_sig\u001b[39m.\u001b[39mbind(ax, \u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[1;32m 1364\u001b[0m auto_label \u001b[39m=\u001b[39m (bound\u001b[39m.\u001b[39marguments\u001b[39m.\u001b[39mget(label_namer)\n\u001b[1;32m 1365\u001b[0m \u001b[39mor\u001b[39;00m bound\u001b[39m.\u001b[39mkwargs\u001b[39m.\u001b[39mget(label_namer))\n",
"File \u001b[0;32m/usr/lib/python3.10/site-packages/matplotlib/axes/_axes.py:4516\u001b[0m, in \u001b[0;36mAxes.scatter\u001b[0;34m(self, x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, edgecolors, plotnonfinite, **kwargs)\u001b[0m\n\u001b[1;32m 4513\u001b[0m \u001b[39mif\u001b[39;00m edgecolors \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 4514\u001b[0m orig_edgecolor \u001b[39m=\u001b[39m kwargs\u001b[39m.\u001b[39mget(\u001b[39m'\u001b[39m\u001b[39medgecolor\u001b[39m\u001b[39m'\u001b[39m, \u001b[39mNone\u001b[39;00m)\n\u001b[1;32m 4515\u001b[0m c, colors, edgecolors \u001b[39m=\u001b[39m \\\n\u001b[0;32m-> 4516\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_parse_scatter_color_args(\n\u001b[1;32m 4517\u001b[0m c, edgecolors, kwargs, x\u001b[39m.\u001b[39;49msize,\n\u001b[1;32m 4518\u001b[0m get_next_color_func\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_get_patches_for_fill\u001b[39m.\u001b[39;49mget_next_color)\n\u001b[1;32m 4520\u001b[0m \u001b[39mif\u001b[39;00m plotnonfinite \u001b[39mand\u001b[39;00m colors \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 4521\u001b[0m c \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39mma\u001b[39m.\u001b[39mmasked_invalid(c)\n",
"File \u001b[0;32m/usr/lib/python3.10/site-packages/matplotlib/axes/_axes.py:4359\u001b[0m, in \u001b[0;36mAxes._parse_scatter_color_args\u001b[0;34m(c, edgecolors, kwargs, xsize, get_next_color_func)\u001b[0m\n\u001b[1;32m 4356\u001b[0m \u001b[39mraise\u001b[39;00m invalid_shape_exception(c\u001b[39m.\u001b[39msize, xsize) \u001b[39mfrom\u001b[39;00m \u001b[39merr\u001b[39;00m\n\u001b[1;32m 4357\u001b[0m \u001b[39m# Both the mapping *and* the RGBA conversion failed: pretty\u001b[39;00m\n\u001b[1;32m 4358\u001b[0m \u001b[39m# severe failure => one may appreciate a verbose feedback.\u001b[39;00m\n\u001b[0;32m-> 4359\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 4360\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m'\u001b[39m\u001b[39mc\u001b[39m\u001b[39m'\u001b[39m\u001b[39m argument must be a color, a sequence of colors, \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 4361\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mor a sequence of numbers, not \u001b[39m\u001b[39m{\u001b[39;00mc\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m) \u001b[39mfrom\u001b[39;00m \u001b[39merr\u001b[39;00m\n\u001b[1;32m 4362\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 4363\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mlen\u001b[39m(colors) \u001b[39mnot\u001b[39;00m \u001b[39min\u001b[39;00m (\u001b[39m0\u001b[39m, \u001b[39m1\u001b[39m, xsize):\n\u001b[1;32m 4364\u001b[0m \u001b[39m# NB: remember that a single color is also acceptable.\u001b[39;00m\n\u001b[1;32m 4365\u001b[0m \u001b[39m# Besides *colors* will be an empty array if c == 'none'.\u001b[39;00m\n",
"\u001b[0;31mValueError\u001b[0m: 'c' argument must be a color, a sequence of colors, or a sequence of numbers, not decoding\n0 0.728825\n1 0.728807\n2 0.728802\n3 0.729053\n4 0.729382\n.. ...\n395 0.988458\n396 0.917262\n397 0.913100\n398 0.974053\n399 0.055629\n\n[400 rows x 1 columns]"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGiCAYAAADA0E3hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAcw0lEQVR4nO3db2zdVf3A8U/b0VsItEzn2m0WKyiiAhturBYkiKk2gUz3wDjBbHPhj+AkuEZlY7CK6DoRyKIrLkwQH6ibEDDGLUOsLgapWdjWBGSDwMBNYwsT184iLWu/vweG+qvrYLf0z077eiX3wY7n3O+5Hkbf3H8tyLIsCwCABBSO9QYAAI6VcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSkXe4/OEPf4h58+bF9OnTo6CgIH75y1++5Zpt27bFRz7ykcjlcvG+970v7r///iFsFQCY6PIOl66urpg5c2Y0NTUd0/wXXnghLrvssrjkkkuitbU1vvrVr8ZVV10VjzzySN6bBQAmtoK380sWCwoK4uGHH4758+cfdc6NN94Ymzdvjqeeeqp/7POf/3wcPHgwtm7dOtRLAwAT0KSRvkBLS0vU1tYOGKurq4uvfvWrR13T3d0d3d3d/X/u6+uLV155Jd75zndGQUHBSG0VABhGWZbFoUOHYvr06VFYODxvqx3xcGlra4vy8vIBY+Xl5dHZ2Rn//ve/48QTTzxiTWNjY9x6660jvTUAYBTs378/3v3udw/LfY14uAzFihUror6+vv/PHR0dcdppp8X+/fujtLR0DHcGAByrzs7OqKysjFNOOWXY7nPEw6WioiLa29sHjLW3t0dpaemgz7ZERORyucjlckeMl5aWChcASMxwvs1jxL/HpaamJpqbmweMPfroo1FTUzPSlwYAxpm8w+Vf//pXtLa2Rmtra0T85+POra2tsW/fvoj4z8s8ixYt6p9/7bXXxt69e+Mb3/hG7NmzJ+6+++74xS9+EcuWLRueRwAATBh5h8sTTzwR5513Xpx33nkREVFfXx/nnXderFq1KiIi/v73v/dHTETEe9/73ti8eXM8+uijMXPmzLjzzjvjRz/6UdTV1Q3TQwAAJoq39T0uo6WzszPKysqio6PDe1wAIBEj8fPb7yoCAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZQwqXpqamqKqqipKSkqiuro7t27e/6fy1a9fGBz7wgTjxxBOjsrIyli1bFq+99tqQNgwATFx5h8umTZuivr4+GhoaYufOnTFz5syoq6uLl156adD5P/vZz2L58uXR0NAQu3fvjnvvvTc2bdoUN91009vePAAwseQdLnfddVdcffXVsWTJkvjQhz4U69evj5NOOinuu+++Qec//vjjceGFF8YVV1wRVVVV8alPfSouv/zyt3yWBgDgf+UVLj09PbFjx46ora397x0UFkZtbW20tLQMuuaCCy6IHTt29IfK3r17Y8uWLXHppZce9Trd3d3R2dk54AYAMCmfyQcOHIje3t4oLy8fMF5eXh579uwZdM0VV1wRBw4ciI997GORZVkcPnw4rr322jd9qaixsTFuvfXWfLYGAEwAI/6pom3btsXq1avj7rvvjp07d8ZDDz0Umzdvjttuu+2oa1asWBEdHR39t/3794/0NgGABOT1jMuUKVOiqKgo2tvbB4y3t7dHRUXFoGtuueWWWLhwYVx11VUREXHOOedEV1dXXHPNNbFy5cooLDyynXK5XORyuXy2BgBMAHk941JcXByzZ8+O5ubm/rG+vr5obm6OmpqaQde8+uqrR8RJUVFRRERkWZbvfgGACSyvZ1wiIurr62Px4sUxZ86cmDt3bqxduza6urpiyZIlERGxaNGimDFjRjQ2NkZExLx58+Kuu+6K8847L6qrq+O5556LW265JebNm9cfMAAAxyLvcFmwYEG8/PLLsWrVqmhra4tZs2bF1q1b+9+wu2/fvgHPsNx8881RUFAQN998c/ztb3+Ld73rXTFv3rz4zne+M3yPAgCYEAqyBF6v6ezsjLKysujo6IjS0tKx3g4AcAxG4ue331UEACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhAsAkAzhAgAkQ7gAAMkQLgBAMoQLAJAM4QIAJEO4AADJEC4AQDKECwCQDOECACRDuAAAyRAuAEAyhhQuTU1NUVVVFSUlJVFdXR3bt29/0/kHDx6MpUuXxrRp0yKXy8WZZ54ZW7ZsGdKGAYCJa1K+CzZt2hT19fWxfv36qK6ujrVr10ZdXV0888wzMXXq1CPm9/T0xCc/+cmYOnVqPPjggzFjxoz4y1/+Eqeeeupw7B8AmEAKsizL8llQXV0d559/fqxbty4iIvr6+qKysjKuv/76WL58+RHz169fH9/73vdiz549ccIJJwxpk52dnVFWVhYdHR1RWlo6pPsAAEbXSPz8zuulop6entixY0fU1tb+9w4KC6O2tjZaWloGXfOrX/0qampqYunSpVFeXh5nn312rF69Onp7e496ne7u7ujs7BxwAwDIK1wOHDgQvb29UV5ePmC8vLw82traBl2zd+/eePDBB6O3tze2bNkSt9xyS9x5553x7W9/+6jXaWxsjLKysv5bZWVlPtsEAMapEf9UUV9fX0ydOjXuueeemD17dixYsCBWrlwZ69evP+qaFStWREdHR/9t//79I71NACABeb05d8qUKVFUVBTt7e0Dxtvb26OiomLQNdOmTYsTTjghioqK+sc++MEPRltbW/T09ERxcfERa3K5XORyuXy2BgBMAHk941JcXByzZ8+O5ubm/rG+vr5obm6OmpqaQddceOGF8dxzz0VfX1//2LPPPhvTpk0bNFoAAI4m75eK6uvrY8OGDfGTn/wkdu/eHdddd110dXXFkiVLIiJi0aJFsWLFiv751113Xbzyyitxww03xLPPPhubN2+O1atXx9KlS4fvUQAAE0Le3+OyYMGCePnll2PVqlXR1tYWs2bNiq1bt/a/YXffvn1RWPjfHqqsrIxHHnkkli1bFueee27MmDEjbrjhhrjxxhuH71EAABNC3t/jMhZ8jwsApGfMv8cFAGAsCRcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBnCBQBIhnABAJIhXACAZAgXACAZwgUASIZwAQCSIVwAgGQIFwAgGcIFAEiGcAEAkiFcAIBkCBcAIBn
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(param_corr[:, 0], param_corr[:, 1], c=param)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x7f35ae6ef310>"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiQAAAGdCAYAAAAi3mhQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABE8klEQVR4nO3df1xUdb4/8NcMCojKKBIMGgraD2NR/BVEpXULk+yhtXXvmv3Q3LL02t5utHuVSsnaDdturvdurpar297cym0fZrq67Ncs01aMkmxjMTcRf2zOQEAMKAI6c75/sDMxAzOcc+Z8zpkfr+fjweORw3sOnzlMnPd8zvvz/pgkSZJAREREZCCz0QMgIiIiYkJCREREhmNCQkRERIZjQkJERESGY0JCREREhmNCQkRERIZjQkJERESGY0JCREREhutn9ADkcLlcOHPmDAYPHgyTyWT0cIiIiEgGSZLQ2tqK4cOHw2wOPAcSFgnJmTNnkJ6ebvQwiIiISIXTp0/j0ksvDRgTFgnJ4MGDAXS9oMTERINHQ0RERHK0tLQgPT3dcx0PJCwSEvdtmsTERCYkREREYUZOuQWLWomIiMhwTEiIiIjIcExIiIiIyHBMSIiIiMhwTEiIiIjIcExIiIiIyHBMSIiIiMhwTEiIiIjIcIoTkn379mHWrFkYPnw4TCYTtm3b1udz9u7di0mTJiEuLg6XXXYZXnvtNRVDJSIiii5Ol4Tymka8e/hrlNc0wumSjB6SMIo7tZ47dw45OTn44Q9/iDvvvLPP+NraWtx2221YtGgRfve732HPnj146KGHkJaWhhkzZqgaNBERUaQrq7Jh5Y5q2BztnsfSLPEomZWFwuw0A0cmhkmSJNXplslkwjvvvIM77rjDb8zSpUuxc+dOVFVVeR67++670dzcjLKyMlk/p6WlBRaLBQ6Hg63jiYgo4pVV2bB4cyV8L9DuBuzr7psUFkmJkuu38BqS8vJyFBQUeD02Y8YMlJeXi/7RREREYcfpkrByR3WPZASA57GVO6oj7vaN8M317HY7UlNTvR5LTU1FS0sLzp8/jwEDBvR4TkdHBzo6Ojz/bmlpET1MIiIiVZwuCRW1TahvbUfK4HjkZiYhxtz3ZnL+VNQ2ed2m8SUBsDnaUVHbhPwxw1T/HED7sQcjJHf7LS0txcqVK40eBhERUUAi6jzqW/0nI2ri/Am1GhXht2ysVivq6uq8Hqurq0NiYmKvsyMAUFxcDIfD4fk6ffq06GESEREp4q7z8J3NsDnasXhzJcqqbKqOmzI4XtO43vgbuz3IsQdDeEKSn5+PPXv2eD22e/du5Ofn+31OXFwcEhMTvb6IiIhCRaA6D6DrtoraOo/czCSkWeLh78aJCV0zGbmZSYqPDYRujYrihOTs2bM4fPgwDh8+DKBrWe/hw4dx6tQpAF2zG/PmzfPEL1q0CMePH8d//dd/4csvv8SvfvUr/P73v8fjjz+uzSsgIiLSWV91HsB3dR5KxZhNKJmVBQA9khL3v0tmZamu9VBSo6InxQnJp59+iokTJ2LixIkAgKKiIkycOBErVqwAANhsNk9yAgCZmZnYuXMndu/ejZycHLz00kv49a9/zR4kREQUtuyO85rG+SrMTsO6+ybBavG+LWO1xAe95FevGhWlFBe13njjjQjUuqS3Lqw33ngjPvvsM6U/ioiIKCQ1nevUNK43hdlpmJ5l1XwVjB41KmqE5CobIiKiUJY0KE7TOH9izKagl/b6mjxqKMwmIFCJiNnUFacnbq5HRESkkDVR3uyB3Dg9HTr5bcBkBOhKVg6d/FafAf0TExIiIiKF3CthAglmJYxIoVpDwoSEiIhIIfdKGBN6XwljQnArYUQK1RoSJiREREQqiFwJI5LoPidqsaiViIhIJVErYdxE7DXjnt1ZvLkSJsCrQZoWfU7UMkmB1vCGCCXbFxMREUUC0XvN6LGXjZLrNxMSIiKiEOPea8b3Au2es9DqlpDo3X6VXL95y4aIiCiEyN1rZnqWVZPbN1r3OVGLRa1EREQhROQ+OaGMCQkREVEIsbfI6/8hNy5cMCEhIiIKIU1nOzSNCxdMSIiIiEJI0sBYTePCBRMSIiKiEBKqnVRFY0JCREQUSuQunAm9rvRBYUJCREQUQhpk1obIjQsXTEiIiIhCSLTesmFjNCIiohDi3vwuUC8SrTa/E92pVQkmJERERCEkxmzC7Jw0vLKv1m/M7Jy0oBOHsiobntn+N9hbvrv1Y02MwzOzv2fITsW8ZUNERBRCnC4J2z+3BYzZ/rkNTpf6rejKqmxYtLnSKxkBAHtLBxZtrkRZVeCfLwITEiIiohAiunW80yVh2dYvAsYs2/pFUAmPGkxIiIiIQkh9q7yW8HLjfB2saURz24WAMc1tF3CwplHV8dViQkJERBRCkgfGaRrnq/x4g6ZxWmFCQkREFEqEN0YLzc5rTEiIiIhCiOjGaPljhmkapxUmJERERCFEdGO0a0YPw5CE/gFjhib0xzWjmZAQERFFLXdjNH83TEwIrjFajNmEVXeOCxhTeuc43RukMSEhIiIKITFmE0pmZQHoWcXh/nfJrKygEobC7DSsv28SrInesyxplnisv2+SIY3RTJIk6bvQWIWWlhZYLBY4HA4kJiYaPRwiIiIPUe3Xy6psWLmj2qsnSZolHiWzsjRLGES3jldy/WZCQkREpJLopCGU9ppRgwkJERGRYGVVNizeXAnfi6g7XVhn0K2PUKLk+s0aEiIiIoWcLgkrd1T3SEYAeB5buaNa9/br4YwJCRERkUJ97TcjIbj9ZqJRP6MHQEREFG5E7zfjFu41JEowISEiIlJIdPMyQJ9VNqGEt2yIiIgUEt28zF0w63tbyO5ox+LNlSirsqk6bihjQkJERKSQyOZl0Vowy4SEiIhIhcLsNKy7bxKsFu/bMlZLfFBLfqO1YJY1JERERCoVZqdhepZV08JTvQpmQw0TEiIioiDEmE3IH6Pdzrh6FMyGIt6yISIiCiGiC2ZDFRMSIiKiEKLHbr+hiAkJERFRiHEXzKYmxnk9npoYF7F75DAhISIiCln+5kgiDxMSIiKKaE6XhPKaRrx7+GuU1zSGRf8Od2M0e4v3Spq6lshtjMZVNkREFLHCsf16X43RTOhqjDY9yxpRdSScISEioogUru3Xo7UxGhMSIiKKOOHcfj1aG6MxISEioogTzrMM0doYjTUkRERkKKdL0rT1OqDvLIPW48/NTMKQhP5obrvgN2ZoQv+Ia4zGhISIiAwjquhUr1kGo4pmQ+9GU/B4y4aIiAwhsuh08qih6GuSwmzqilNL1PgrapsCzo4AQHPbhZC83RQMJiRERKQ70UWnh05+i76e6pK64tQQOX4WtRIREelEdNGp6Iu6yPFHa1ErExIiItKd6IRB9EVd5Pjdu/0Gwt1+iYiINCA6YXBf1P2VkZgQ3EVd5PhjzCbMzglcEDs7Jy2iurQCTEiIiMgAootOY8wmlMzKChhTMitL9UVdZMLjdEnY/nnggtjtn9tCsqlbMFQlJGvXrkVGRgbi4+ORl5eHioqKgPFr1qzBlVdeiQEDBiA9PR2PP/442tsjqxiHiIjkE110CgCF2WkoyErp9XsFWSlBLcvtnvD4249XbcLTV30KELpN3YKhOCHZsmULioqKUFJSgsrKSuTk5GDGjBmor6/vNf6NN97AsmXLUFJSgiNHjmDjxo3YsmULnnzyyaAHT0RE+tB6x1zfXWyDjetN6a5q7K7u/dq0u7oepbuqVR8b6Ep41t03CVafeg+rJR7r7pukOuGJ1lU2ihujrV69GgsXLsSCBQsAAOvXr8fOnTuxadMmLFu2rEf8gQMHcN111+Gee+4BAGRkZGDu3Ln4+OOPgxw6ERHpQUTzr3qZiYbcOF+dF114dX9twJhX99fiiVvGIraf+uqFwuw0TM+yatqplatsZOjs7MShQ4dQUFDw3QHMZhQUFKC8vLzX51x77bU4dOiQ57bO8ePHsWvXLsycOdPvz+no6EBLS4vXFxER6U9U86/qMw5N43z99sAJSH1M4khSV1ywYswm5I8ZhtsnjED+mGF
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(param_corr[:, 0], param)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/lib/python3.10/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n",
" warnings.warn(msg, FutureWarning)\n"
]
},
{
"data": {
"text/plain": [
"<AxesSubplot:ylabel='Density'>"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGdCAYAAADzOWwgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJKklEQVR4nO3de1xUdf4/8NdcmBluMwjCAAFK3im1NMPZbmvxFY22i7qb5aaV2epi39Svaf62r7XWZlvfMruotZXYt+zifs1KSyO8VeKNQk0TbyQmDKDIDNcBZj6/P4Y5OooXEDgzc17Px2MewjmfOfP+qDO8+JzP5xyVEEKAiIiISMHUchdAREREJDcGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8BiIiIiJSPAYiIiIiUjwGIiIiIlI8rdwF+AOXy4Xi4mKEh4dDpVLJXQ4RERFdAiEEqqqqEB8fD7X6wmNADESXoLi4GImJiXKXQURERG1w7NgxJCQkXLANA9ElCA8PB+D+CzUajTJXQ0RERJfCbrcjMTFR+jl+IQxEl8BzmsxoNDIQERER+ZlLme7CSdVERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHhauQsgIpLb8m1FF9x/f2pSJ1VCRHLhCBEREREpHgMRERERKR4DERERESkeAxEREREpnqyBqHv37lCpVOc8MjMzAQD19fXIzMxEVFQUwsLCMHr0aJSWlnodo6ioCBkZGQgJCUFMTAyeeOIJNDU1ebXZuHEjBg0aBL1ej549eyIrK6uzukhERER+QNZAtGPHDpSUlEiP7OxsAMAf//hHAMD06dPx5ZdfYsWKFdi0aROKi4sxatQo6flOpxMZGRloaGjAli1bsGzZMmRlZWHu3LlSm8LCQmRkZGDYsGHIz8/HtGnT8Mgjj2DdunWd21kiIiLyWSohhJC7CI9p06Zh9erVOHjwIOx2O6Kjo7F8+XKMGTMGALB//37069cPubm5GDp0KL7++mvccccdKC4uhtlsBgAsWbIEs2fPRnl5OXQ6HWbPno01a9bg559/ll5n7NixqKysxNq1ay+pLrvdDpPJBJvNBqPR2P4dJyJZcdk9UWBqzc9vn5lD1NDQgA8++AAPP/wwVCoV8vLy0NjYiLS0NKlN3759kZSUhNzcXABAbm4u+vfvL4UhAEhPT4fdbsfevXulNmcew9PGc4yWOBwO2O12rwcREREFLp8JRKtWrUJlZSUefPBBAIDVaoVOp0NERIRXO7PZDKvVKrU5Mwx59nv2XaiN3W5HXV1di7XMnz8fJpNJeiQmJl5u94iIiMiH+UwgevfddzFy5EjEx8fLXQrmzJkDm80mPY4dOyZ3SURERNSBfOLWHUePHsW3336LlStXSttiY2PR0NCAyspKr1Gi0tJSxMbGSm22b9/udSzPKrQz25y9Mq20tBRGoxHBwcEt1qPX66HX6y+7X0REROQffGKEaOnSpYiJiUFGRoa0bfDgwQgKCkJOTo60raCgAEVFRbBYLAAAi8WCPXv2oKysTGqTnZ0No9GIlJQUqc2Zx/C08RyDiIiISPZA5HK5sHTpUkyYMAFa7ekBK5PJhIkTJ2LGjBnYsGED8vLy8NBDD8FisWDo0KEAgOHDhyMlJQUPPPAAdu3ahXXr1uGpp55CZmamNMIzefJkHDlyBLNmzcL+/fuxaNEifPrpp5g+fbos/SUiIiLfI/sps2+//RZFRUV4+OGHz9m3YMECqNVqjB49Gg6HA+np6Vi0aJG0X6PRYPXq1ZgyZQosFgtCQ0MxYcIEzJs3T2qTnJyMNWvWYPr06Vi4cCESEhLwzjvvID09vVP6R0RERL7Pp65D5Kt4HSKiwMbrEBEFJr+8DhERERGRXBiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPEYiIiIiEjxGIiIiIhI8RiIiIiISPFkD0THjx/Hn//8Z0RFRSE4OBj9+/fHzp07pf1CCMydOxdxcXEIDg5GWloaDh486HWMiooKjBs3DkajEREREZg4cSKqq6u92uzevRs33XQTDAYDEhMT8eKLL3ZK/4iIiMj3yRqITp06hRtuuAFBQUH4+uuvsW/fPrz88svo0qWL1ObFF1/Ea6+9hiVLlmDbtm0IDQ1Feno66uvrpTbjxo3D3r17kZ2djdWrV2Pz5s149NFHpf12ux3Dhw9Ht27dkJeXh5deegnPPPMM3n777U7tLxEREfkmlRBCyPXiTz75JH744Qd89913Le4XQiA+Ph7/9V//hZkzZwIAbDYbzGYzsrKyMHbsWPzyyy9ISUnBjh07cN111wEA1q5di9tvvx2//fYb4uPjsXjxYvztb3+D1WqFTqeTXnvVqlXYv3//Reu02+0wmUyw2WwwGo3t1Hsi8hXLtxVdcP/9qUmdVAkRtafW/PyWdYToiy++wHXXXYc//vGPiImJwbXXXot//etf0v7CwkJYrVakpaVJ20wmE1JTU5GbmwsAyM3NRUREhBSGACAtLQ1qtRrbtm2T2tx8881SGAKA9PR0FBQU4NSpU+fU5XA4YLfbvR5EREQUuGQNREeOHMHixYvRq1cvrFu3DlOmTMF//ud/YtmyZQAAq9UKADCbzV7PM5vN0j6r1YqYmBiv/VqtFpGRkV5tWjrGma9xpvnz58NkMkmPxMTEdugtERER+SpZA5HL5cKgQYPw/PPP49prr8Wjjz6KSZMmYcmSJXKWhTlz5sBms0mPY8eOyVoPERERdSxZA1FcXBxSUlK8tvXr1w9FRe7z+bGxsQCA0tJSrzalpaXSvtjYWJSVlXntb2pqQkVFhVeblo5x5mucSa/Xw2g0ej2IiIgocMkaiG644QYUFBR4bTtw4AC6desGAEhOTkZsbCxycnKk/Xa7Hdu2bYPFYgEAWCwWVFZWIi8vT2qzfv16uFwupKamSm02b96MxsZGqU12djb69OnjtaKNiIiIlEnWQDR9+nRs3boVzz//PA4dOoTly5fj7bffRmZmJgBApVJh2rRpeO655/DFF19gz549GD9+POLj43H33XcDcI8ojRgxApMmTcL27dvxww8/YOrUqRg7dizi4+MBAPfffz90Oh0mTpyIvXv34pNPPsHChQsxY8YMubpOREREPkQr54sPGTIEn332GebMmYN58+YhOTkZr776KsaNGye1mTVrFmpqavDoo4+isrISN954I9auXQuDwSC1+fDDDzF16lTcdtttUKvVGD16NF577TVpv8lkwjfffIPMzEwMHjwYXbt2xdy5c72uVURERETKJet1iPwFr0NEFNh4HSKiwOQ31yEiIiIi8gUMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4DERERESkeAxEREREpHgMRERERKR4sgaiZ555BiqVyuvRt29faX99fT0yMzMRFRWFsLA
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.distplot(param.clip(0.885, 0.888))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.10.5 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "e7370f93d1d0cde622a1f8e1c04877d8463912d04d973331ad4851f04de6915a"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}