You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
93 lines
3.4 KiB
93 lines
3.4 KiB
import random |
|
from dataclasses import dataclass, field |
|
import typing |
|
import abc |
|
import numpy as np |
|
|
|
|
|
class Channel(abc.ABC): |
|
@abc.abstractmethod |
|
def send_classical(self, data: str, is_bob: bool = True): |
|
pass |
|
|
|
@abc.abstractmethod |
|
def send_bit(self, bit: bool, basis: bool): |
|
pass |
|
|
|
@abc.abstractmethod |
|
def recv_classical(self, n: int, is_bob: bool = True) -> str: |
|
pass |
|
|
|
@abc.abstractmethod |
|
def get_photon_results(self, basises: typing.Optional[typing.List[bool]]) -> typing.List[typing.Tuple[bool, bool]]: |
|
""" |
|
Returns tuple of clicks of 0 and 1 for each bit |
|
""" |
|
pass |
|
|
|
|
|
@dataclass |
|
class QChannelImpl(Channel): |
|
# [[(value, basis)]] |
|
bob_photons: typing.List[typing.List[typing.Tuple[bool, bool]]] = field(default_factory=list) |
|
bob_classical_data_pool: str = '' |
|
alice_classical_data_pool: str = '' |
|
# probability for a photon to go to the wrong detector |
|
p_opt: float = 0.05 |
|
# dark count |
|
p_dc: float = 0.05 |
|
# the average number of emitted photons |
|
mu: float = 1 |
|
# eta - the probability for a detector to react to a photon |
|
detector_sensitivity: float = 0.8 |
|
transmittance: float = 0.8 |
|
|
|
def get_number_of_photos(self) -> int: |
|
return round(np.random.poisson(self.mu)) |
|
|
|
def send_classical(self, data: str, is_bob: bool = True): |
|
# print(f'{["Alice", "Bob"][is_bob]} is sending data: {data}') |
|
if is_bob: |
|
self.bob_classical_data_pool += data |
|
else: |
|
self.alice_classical_data_pool += data |
|
|
|
def send_bit(self, bit: bool, basis: bool): |
|
n_photons = self.get_number_of_photos() |
|
delta = [(bit, basis) for _i in range(n_photons)] |
|
self.bob_photons.append(delta) |
|
|
|
def recv_classical(self, n: int, is_bob: bool = True) -> str: |
|
pool_name = ['alice_classical_data_pool', 'bob_classical_data_pool'][not is_bob] |
|
if n == -1: |
|
n = len(getattr(self, pool_name)) |
|
# print(f'{["Alice", "Bob"][is_bob]} is receiving {n} ' |
|
# f'characters of data. Length now: {len(getattr(self, pool_name))}') |
|
while len(getattr(self, pool_name)) < n: |
|
pass |
|
data = getattr(self, pool_name)[:n] |
|
setattr(self, pool_name, getattr(self, pool_name)[n:]) |
|
# print(f'{["Alice", "Bob"][is_bob]} received {n} characters') |
|
return data |
|
|
|
def get_photon_results(self, basises: typing.Optional[typing.List[bool]]) -> typing.List[typing.Tuple[bool, bool]]: |
|
res = list() |
|
for photons, basis in zip(self.bob_photons, basises): |
|
clicks = [random.uniform(0, 1) <= self.p_dc, random.uniform(0, 1) <= self.p_dc] |
|
for ph_bit, ph_basis in photons: |
|
if random.uniform(0, 1) > self.transmittance: |
|
continue |
|
if random.uniform(0, 1) <= self.detector_sensitivity: # We detected everything correctly |
|
if ph_basis != basis: |
|
if random.uniform(0, 1) > 0.5: |
|
clicks[1] = True |
|
else: |
|
clicks[0] = True |
|
continue |
|
if random.uniform(0, 1) > self.p_opt: # Photon doesn't flip |
|
clicks[ph_bit] = True |
|
else: |
|
clicks[not ph_bit] = False |
|
res.append((clicks[0], clicks[1])) |
|
self.bob_photons = list() |
|
return res
|
|
|