|
|
|
import random
|
|
|
|
from dataclasses import dataclass, field
|
|
|
|
import typing
|
|
|
|
import abc
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
class Channel(abc.ABC):
|
|
|
|
@abc.abstractmethod
|
|
|
|
def send_classical(self, data: str, is_bob: bool = True):
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abc.abstractmethod
|
|
|
|
def send_bit(self, bit: bool, basis: bool):
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abc.abstractmethod
|
|
|
|
def recv_classical(self, n: int, is_bob: bool = True) -> str:
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abc.abstractmethod
|
|
|
|
def get_photon_results(self, basises: typing.Optional[typing.List[bool]]) -> typing.List[typing.Tuple[bool, bool]]:
|
|
|
|
"""
|
|
|
|
Returns tuple of clicks of 0 and 1 for each bit
|
|
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class ChannelSym(Channel):
|
|
|
|
# [[(value, basis)]]
|
|
|
|
bob_photons: typing.List[typing.List[typing.Tuple[bool, bool]]] = field(default_factory=list)
|
|
|
|
bob_classical_data_pool: str = ''
|
|
|
|
alice_classical_data_pool: str = ''
|
|
|
|
# probability for a photon to go to the wrong detector
|
|
|
|
p_opt: float = 0.05
|
|
|
|
# dark count
|
|
|
|
p_dc: float = 0.05
|
|
|
|
# the average number of emitted photons
|
|
|
|
mu: float = 1
|
|
|
|
# eta - the probability for a detector to react to a photon
|
|
|
|
detector_sensitivity: float = 0.8
|
|
|
|
transmittance: float = 0.8
|
|
|
|
eve: typing.Optional[typing.Any] = None
|
|
|
|
|
|
|
|
def get_number_of_photos(self) -> int:
|
|
|
|
return round(np.random.poisson(self.mu))
|
|
|
|
|
|
|
|
def send_classical(self, data: str, is_bob: bool = True):
|
|
|
|
if is_bob:
|
|
|
|
self.bob_classical_data_pool += data
|
|
|
|
else:
|
|
|
|
self.alice_classical_data_pool += data
|
|
|
|
|
|
|
|
def send_bit(self, bit: bool, basis: bool):
|
|
|
|
n_photons = self.get_number_of_photos()
|
|
|
|
delta = [(bit, basis) for _i in range(n_photons)]
|
|
|
|
if self.eve is not None:
|
|
|
|
delta = self.eve.process_photons(delta)
|
|
|
|
self.bob_photons.append(delta)
|
|
|
|
|
|
|
|
def recv_classical(self, n: int, is_bob: bool = True) -> str:
|
|
|
|
pool_name = ['alice_classical_data_pool', 'bob_classical_data_pool'][not is_bob]
|
|
|
|
if n == -1:
|
|
|
|
n = len(getattr(self, pool_name))
|
|
|
|
while len(getattr(self, pool_name)) < n:
|
|
|
|
pass
|
|
|
|
data = getattr(self, pool_name)[:n]
|
|
|
|
setattr(self, pool_name, getattr(self, pool_name)[n:])
|
|
|
|
# print(f'{["Alice", "Bob"][is_bob]} received {n} characters')
|
|
|
|
return data
|
|
|
|
|
|
|
|
def get_photon_results(self, basises: typing.Optional[typing.List[bool]]) -> typing.List[typing.Tuple[bool, bool]]:
|
|
|
|
res = list()
|
|
|
|
while len(self.bob_photons) < len(basises):
|
|
|
|
pass
|
|
|
|
for photons, basis in zip(self.bob_photons, basises):
|
|
|
|
clicks = [random.uniform(0, 1) <= self.p_dc, random.uniform(0, 1) <= self.p_dc]
|
|
|
|
for ph_bit, ph_basis in photons:
|
|
|
|
if random.uniform(0, 1) > self.transmittance:
|
|
|
|
continue
|
|
|
|
if random.uniform(0, 1) <= self.detector_sensitivity: # We detected everything correctly
|
|
|
|
if ph_basis != basis:
|
|
|
|
if random.uniform(0, 1) > 0.5:
|
|
|
|
clicks[1] = True
|
|
|
|
else:
|
|
|
|
clicks[0] = True
|
|
|
|
continue
|
|
|
|
if random.uniform(0, 1) > self.p_opt: # Photon doesn't flip
|
|
|
|
clicks[ph_bit] = True
|
|
|
|
else:
|
|
|
|
clicks[not ph_bit] = False
|
|
|
|
res.append((clicks[0], clicks[1]))
|
|
|
|
self.bob_photons = list()
|
|
|
|
return res
|