Agorata

Lev CHIzHOV 2

@ennucore
July 26, 2022

Abstract

Agorata is an implementation of the idealized economic agent, or, specifically, an aggregator of smart
contracts. It combines one or more contracts proposed by the members of the network in a deal which
can be evaluated as profitable for Agorata with low risks. Using this approach, Agorata can provide
infrastructure for loans, flashloans, bets, derivatives, bridging between chains, and many more financial
instruments.

CONTENTS

I__Introduction|
II"Overview]
[IIT Contract representation|

it Contract evaluation algorithms| 00 00
iii Building the formal representation]

1V ExamEIes| ..

[IV Decision-making algorithm|
1 Agentparameters| Lo Lo

i1 Deal evaluationl
fiii Considering thedeall o o oo

[V_Applications|

[vi More complex examples and other usages|

VI Conclusionl

1 Moscow Institute of Physics and Technology
2 Ludwig-Maximilians-Universitit Miinchen

https://ennucore.com

Agorata e July 2022 e lagorata.io

I. INTRODUCTION

There is a variety of standard financial organizations that provide their capital for some simple
purely financial deals: banks, brokers, gambling institutions, betting institutions, and many more.
Most of them have their own DeFi counterparts, as well as some services that are only possible on
the blockchain — for example, flashloans.

All of these organizations can be generalized to an economic agent that has a utility function
and accepts a proposed deal if and only if it is the most beneficial in terms of this function. These
particular implementations, however, only consider a very limited subset of deals. Also, all of
them work only with purely financial deals which include not more than 3 partieﬂ including the
financial organization.

Technologies of decentralization and smart contracts in particular provide the foundation
for a much more fundamental entity — one which goes far beyond standard simple templated
purely-financial deals. Instead, this entity can be the implementation of the general economic
agent. It can analyze deal proposals and their combinations into more complex deals (for example,
combining two proposal in a risk-free deal, like with betting), which it evaluates and participates
in. As a result, this entity can serve as a liquidity provider, loan broker, a service for finding a
counterparty. It is worth noticing that as the blockchain technologies spread into multiple fields
(not only financial), a service like that can become much more versatile and participate in deals
including various assets (domain names, art, computational resources are the examples of what
can be possible now, future applications will go much further).

The goal of this whitepaper is to present such an entity — Agorata.

II. OVERVIEW
As a service, Agorata has the following path of the user:

1. User creates a smart contract, which is a proposal for a deal, using Agorata’s smart contract
builder, or just uploads the contract code directly to the blockchain. The smart contract
builder is a web application that allows to create a smart contract in the following ways:

¢ Using one of the predefined templates, which are based on the standard financial deals.

¢ Using Agorata’s simplified language for smart contracts, A-Lisp, which is based on the
Lisp language. It is then compiled to the Fift assebly language.

¢ Using the No-Code version for creating a finite state machine smart contract.

2. Agorata builds its own standardized representation of the smart contract.

3. Agorata evaluates the smart contract or a combination of smart contracts in its pool and
decides whether it is profitable or not.

4. Agorata accepts the most profitable deal.

1 An example of such a deal with three parties is a stanard deal on a financial market.

https://agorata.io

Agorata e July 2022 e agorata.io

III. CONTRACT REPRESENTATION

i. The structure

A smart contract is considered as an entity with which other entities (users, smart contracts) can
interact via messagesﬂ For a state of the contract we can determine the messages that can be sent
to the contract and for each of them — the response messages and the next state.

The contract is represented as an actor with several states (a finite number of states which
can have parameters — i.e., variables in the contract) that can receive several (a finite numer
of) types of messages and change the state. The graph of states, messages, and transitions fully
describes the system. Each message has a fixed form with parameters and the output state, which
parameters depend on the parameters of the message. This dependency is characterized by an
algorithm in the form of code in a pure subset of Lisp — A-Lis;%

ap11(0o11) ap12(0o12)

Parameters
of the action

Figure 1: Deal representation.

Each action (message) has parameters 0, including:
1. s — the sender of the message.

2. t — the time (block number) at which the message is sent (may be omitted in the representa-
tion if it is unimportant for the next states).

3. tokens sent with the message.

4. any other possible information.

2The message concept used here is from The Open Network (TON). A message can include tokens, commands,
information, code.

3The choice of Lisp is motivated primarily by the fact that it is a good unified way to represent an algorithm. There are
also ways to use Lisp programs in formal proofs

https://agorata.io

Agorata e July 2022 e lagorata.io

The parameter space for each action can be constrained — the smart contract can reject some
of the messages. For instance, this can lead to the entire space consisting of a small number of
elements (the contract rejects everything except for several specific messages, e.g. a specific person
sending a specific amount of tokens).

The main parameters of the state are the financial outcomes for the smart contracts.

At the first stages of the project, the states and messages will not have variable parameters.
The contract, therefore, will be a finite state machine. For that, the contract will have to check the
incoming message on being in the list of allowed messages.

ii. Contract evaluation algorithms

As we will see in the following section, one of the most important parts of the process is finding
out whether there exists any action that makes the deal profitable or unprofitable. It is also
important to know which actions the agent should make to maximize its output. How do we do
that?

The state parameters are represented as functions of action parameters expressed in a formal
language. This allows to make all the decision based on mathematical proofs using theorem
provers.

Note that for a contract with no parameters of messages and states this kind of an algorithm is
not required.

iii. Building the formal representation
At the first stages of the project, the formal representation will be obtained in two ways:

¢ Pattern matching on the Fift code for standard contracts made from templates
¢ The creation of the contract performed by the user through the constructor on the Agorata
website

Pattern matching will be based on a set of templates with fields. Most prevalent field types
will be addresses, token types, and amounts. This algorithm will be able to recognize proposals of
many types, including loans, derivative, flashloans, bets. For example, for a loan the paramters
are the two involved tokens, sums in them, participating address.

iv. Examples

Figure 2 show graphs for some simple deals.

IV. DECISION-MAKING ALGORITHM

i. Agent parameters

1. Ty is the maximum deal duration — i.e., the horizon after which the benefits of the deal are
not considered.

1year

2. 7T is the charachteristic time of discount — exp(-2—) — 1 is the minimal yearly rate for a

loan.

3. r is the risk parameter for currency switching — the agent will only agree to swap no less
than (1 + r)x in one currency for x in another.

https://agorata.io

Agorata e July 2022 e agorata.io

Value function

User returns Agorata gets

t
Agorata invests I $"3'exp(;)T0N
Smart contract
returns z-c (¢ > 1)
in the response message

Agorata invests x TON
Contract with

z~(1+r)-c-exp(£)
p
SO in X

(a) Flashloan (b) Loan

Figure 2: Graphs for some simple contracts

Given these parameters, the value function V((x;), (t;)) (or V(S)) can be determined. It takes
the sequence of values (x;, t;), where x; are the incoming/outcoming tokens from the agent.

ii. Deal evaluation

The agent considers the worst case of the deal from the perspective of game theory: the best
(from the perspective of the value function) actions of the agent and the “worst” actions of the
counteragents. This sequence of events is the run through the value function in order to make a
decision.

Thus, a deal is considered profitable for the agent (denoted by A) <—i> p(S;) =

V(S;) >0V (Vaz](p(Slj) Vas=A)A Haij : V(Si]') > 0)

Here, S; is state that is analyzed (the state includes the token movements to and from the
agent), a;; are the possible actions (messages) in that state. The function V(S) is the value function
which analyzes the token movements in terms of profitability.

The algorithm starts at the node Sy, then considers all the possible actions (including the
abscence of one) and calls the algorithm at Sy;. If there is any action of the counteragent that
makes the contract non-profitable for the agent, the deal is considered non-profitable. If there is
no possible action and the state includes profit for the agent, the deal is considered acceptable.

https://agorata.io

Agorata e July 2022 e lagorata.io

V. APPLICATIONS

i. Flashloans
ii. Loans

iii. Bridges

iv. Bets

v. Derivatives

vi. More complex examples and other usages

Agorata can also be used as a platform for looking for a counteragent for a deal. As a service,
it will also feature a constructor of smart contracts from the from the formal language (or its
graphical, no-code, representation). This is an extremely useful service since writing programs in
FunC is complex, while the logic in most cases is simple.

VI. CoNCLUSION

https://agorata.io

	Introduction
	Overview
	Contract representation
	The structure
	Contract evaluation algorithms
	Building the formal representation
	Examples

	Decision-making algorithm
	Agent parameters
	Deal evaluation
	Considering the deal

	Applications
	Flashloans
	Loans
	Bridges
	Bets
	Derivatives
	More complex examples and other usages

	Conclusion

