You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
175 lines
7.4 KiB
175 lines
7.4 KiB
from __future__ import annotations |
|
import typing |
|
from dataclasses import dataclass, field |
|
from functools import partial |
|
|
|
import matplotlib as mpl |
|
import sympy as sp |
|
import numpy as np |
|
|
|
from utils import get_orientation_phase_grid |
|
|
|
sp.init_printing() |
|
k, x0, y0, phi_rf, theta_rf, sigma_x, sigma_y, sigma, x, y, theta_grating, phi_grating = sp.symbols(r'k x_0 y_0 \phi_{rf} \theta_{rf} \sigma_x \sigma_y \sigma x y \theta_{grating} \phi_{grating}') |
|
defaults = { |
|
k: 6, |
|
sigma: 1, |
|
phi_rf: sp.pi / 2, |
|
phi_grating: sp.pi / 2, |
|
theta_grating: 0, |
|
sigma: 1, |
|
x0: 0, y0: 0 |
|
} |
|
sigma_x = sigma_y = sigma |
|
grating_f = sp.cos(k * (x - x0) * sp.cos(theta_grating) + k * (y - y0) * sp.sin(theta_grating) + phi_grating) |
|
receptive_field = 1 / (2 * sp.pi * sigma * sigma) * sp.exp(-(x ** 2 + y ** 2) / (2 * sigma ** 2)) * sp.cos( |
|
k * x * sp.cos(theta_rf) + k * y * sp.sin(theta_rf) + phi_rf) |
|
# p = sp.cosh(k ** 2 * sigma ** 2 * sp.cos(theta)) * sp.exp(k ** 2 * (1 + sp.cos(theta) ** 2) / 2) * sp.cos( |
|
# phi - k * (x0 * sp.cos(theta) + y0 * sp.sin(theta))) |
|
|
|
# p = sp.cosh(k ** 2 * sigma ** 2 * sp.cos(theta) * 4) * sp.exp(-4 * k ** 2 * sigma ** 2) * sp.cos( |
|
# phi - k * (x0 * sp.cos(theta) + y0 * sp.sin(theta))) |
|
|
|
p = (1 / 2) * sp.exp(-k*k*sigma*sigma) * ( |
|
sp.exp(-k*k*sigma*sigma*sp.sin(theta_grating + theta_rf)) * sp.cos(phi_grating + phi_rf + 2 * k / (sigma * sigma) * ( |
|
x0 * sp.cos(theta_rf) + y0 * sp.sin(theta_grating) |
|
+ x0 * sp.sin(theta_rf) + y0 * sp.cos(theta_grating) |
|
)) + |
|
sp.exp( k*k*sigma*sigma*sp.sin(theta_grating + theta_rf)) * sp.cos(phi_grating - phi_rf + 2 * k / (sigma * sigma) * ( |
|
-x0 * sp.cos(theta_rf) - y0 * sp.sin(theta_rf) |
|
+ x0 * sp.sin(theta_rf) + y0 * sp.cos(theta_grating) |
|
))) |
|
|
|
sigma_split = np.arange(0.1, 1, 0.05) |
|
k_split = np.arange(0.2, 6, 0.2) |
|
xy_split = np.arange(-1, 1, 0.05) |
|
phi_split = np.arange(0, 2 * np.pi, np.pi / 100) |
|
theta_split = np.arange(0, np.pi, np.pi / 100) |
|
|
|
# The second option is (the distribution function, the function that takes the size and returns the step and the starting point) |
|
Distribution = typing.Union[float, typing.Dict[float, float], typing.Tuple[typing.Callable[[float], float], typing.Callable[[int], typing.Tuple[float, float]]]] |
|
|
|
|
|
def sample_distribution(distribution: Distribution, size: int = 1) -> np.ndarray: |
|
if isinstance(distribution, float) or isinstance(distribution, int): |
|
return np.array([float(distribution)] * size) |
|
if isinstance(distribution, dict): |
|
return np.random.choice(list(distribution.keys()), size, p=list(distribution.values())) |
|
elif isinstance(distribution, tuple): |
|
step, start = distribution[1](size) |
|
res = [start] |
|
for i in range(size): |
|
res.append(res[-1] + step / distribution[0](res[-1])) |
|
return np.array(res) |
|
else: |
|
raise ValueError(f'Unknown distribution type: {type(distribution)}') |
|
|
|
|
|
def get_uniform_dist(start: float, stop: float) -> Distribution: |
|
return (lambda _x: 1, lambda size: ((stop - start) / (size - 1 or 1), start)) |
|
|
|
phi_dist_uni = get_uniform_dist(0, 2 * np.pi) |
|
theta_dist_uni = get_uniform_dist(0, np.pi) |
|
|
|
|
|
def sigmoid(x): |
|
return 1 / (1 + np.exp(-x)) |
|
|
|
|
|
@dataclass |
|
class Cell: |
|
phi_val: float |
|
theta_val: float |
|
sigma_val: float = defaults[sigma] |
|
x0_val: float = defaults[x0] |
|
y0_val: float = defaults[y0] |
|
k_val: float = defaults[k] |
|
|
|
@property |
|
def sympy_func(self) -> sp.Expr: |
|
return receptive_field\ |
|
.subs(sigma, self.sigma_val).subs(x0, self.x0_val).subs(y0, self.y0_val)\ |
|
.subs(k, self.k_val).subs(phi_rf, self.phi_val).subs(theta_rf, self.theta_val) |
|
|
|
def get_tuning_function(self) -> typing.Callable[[np.ndarray, np.ndarray], np.ndarray]: |
|
""" |
|
Get the tuning sympy function as a numpy lambda function of theta and phi. |
|
:return: a function (theta, phi) -> value |
|
""" |
|
return sp.lambdify( |
|
(theta_grating, phi_grating), |
|
p.subs(sigma, self.sigma_val).subs(x0, self.x0_val)\ |
|
.subs(y0, self.y0_val).subs(k, self.k_val)\ |
|
.subs(phi_rf, self.phi_val).subs(theta_rf, self.theta_val), |
|
'numpy') |
|
|
|
def get_value(self, theta_deg: float, phi_deg: float) -> float: |
|
return float(self.get_tuning_function()(theta_deg * np.pi / 180, phi_deg * np.pi / 180)) |
|
|
|
def get_tuning_plot(self, theta_step_deg: float, phi_step_deg: float) -> np.ndarray: |
|
grid = get_orientation_phase_grid(theta_step_deg, phi_step_deg) |
|
return self.get_tuning_function()(grid[:, :, 0], grid[:, :, 1]) |
|
|
|
|
|
@dataclass |
|
class Grating: |
|
phi_val: float = defaults[phi_grating] |
|
theta_val: float = defaults[theta_grating] |
|
k_val: float = defaults[k] |
|
|
|
@property |
|
def sympy_func(self) -> sp.Expr: |
|
return grating_f.subs(k, self.k_val).subs(phi_grating, self.phi_val).subs(theta_grating, self.theta_val) |
|
|
|
|
|
@dataclass |
|
class Population: |
|
cells: typing.List[Cell] = field(default_factory=list) |
|
|
|
@property |
|
def response_func(self) -> typing.Callable[[float, float], np.ndarray]: |
|
""" |
|
Use sp.lambdify and the expression to generate the necessary function. |
|
:return: a function (phi, theta) -> responses |
|
""" |
|
return partial( |
|
sp.lambdify( |
|
(x0, y0, k, sigma, phi_rf, theta_rf, phi_grating, theta_grating, ), |
|
p, 'numpy'), |
|
0, 0, np.array([cell.k_val for cell in self.cells]).reshape((-1, 1)), |
|
np.array([cell.sigma_val for cell in self.cells]).reshape((-1, 1)), |
|
np.array([cell.phi_val for cell in self.cells]).reshape((-1, 1)), |
|
np.array([cell.theta_val for cell in self.cells]).reshape((-1, 1)), |
|
) |
|
|
|
@classmethod |
|
def random(cls, n: int, |
|
phi_dist: Distribution = phi_dist_uni, |
|
theta_dist: Distribution = theta_dist_uni, |
|
sigma_dist: Distribution = defaults[sigma], |
|
k_val: float = defaults[k], |
|
xy_dist: Distribution = get_uniform_dist(-5, 5)): |
|
return cls(cells=[ |
|
Cell(phi_val=phi_val, theta_val=theta_val, sigma_val=sigma_val, x0_val=x0_val, y0_val=y0_val, k_val=k_val) |
|
for phi_val, theta_val, sigma_val, x0_val, y0_val in zip( |
|
sample_distribution(phi_dist, n), |
|
sample_distribution(theta_dist, n), |
|
sample_distribution(sigma_dist, n), |
|
sample_distribution(xy_dist, n), |
|
sample_distribution(xy_dist, n)) |
|
]) |
|
|
|
def get_response(self, phi_deg: float, theta_deg: float, coef: float = 4, use_sigmoid: bool = True) -> np.ndarray: |
|
return (sigmoid if use_sigmoid else (lambda x: x))(np.array([cell.get_value(theta_deg, phi_deg) for cell in self.cells]) * coef) |
|
|
|
def sample_responses( |
|
self, n: int, noise_sigma: float = 0, coef: float = 2, use_sigmoid: bool = True, |
|
custom_grid: typing.Optional[np.ndarray] = None |
|
) -> np.ndarray: |
|
return np.array([ |
|
np.array([self.get_response(phi_deg, theta_deg % 180, coef=coef, use_sigmoid=use_sigmoid), np.ones(len(self.cells)) * phi_deg, |
|
np.ones(len(self.cells)) * theta_deg]).swapaxes(0, 1) |
|
for phi_deg, theta_deg in (np.random.uniform(0, 360, (n, 2)) if custom_grid is None else custom_grid) |
|
]) + np.random.normal( |
|
0, [noise_sigma, 0, 0], |
|
(n if custom_grid is None else len(custom_grid), len(self.cells), 3))
|
|
|