You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
179 lines
5.5 KiB
179 lines
5.5 KiB
# -*- coding: utf-8 -*- |
|
""" |
|
A collection of noise reduction algorithms |
|
""" |
|
import numpy as np |
|
import scipy |
|
import pandas as pd |
|
|
|
from matplotlib import pyplot |
|
from mpl_toolkits.mplot3d import Axes3D |
|
|
|
from sklearn.decomposition import PCA |
|
|
|
from tqdm import trange |
|
from numba import njit, prange |
|
|
|
from persistence import persistence |
|
from decorators import multi_input |
|
|
|
|
|
@njit(parallel=True) |
|
def compute_gradient(S, X, sigma, omega): |
|
"""Compute gradient of F as in arxiv:0910.5947""" |
|
gradF = np.zeros(S.shape) |
|
d = X.shape[1] |
|
N = X.shape[0] |
|
M = S.shape[0] |
|
for j in range(0,M): |
|
normsSX = np.square(S[j] - X).sum(axis=1) |
|
normsSS = np.square(S[j] - S).sum(axis=1) |
|
expsSX = np.exp(-1/(2*sigma**2)*normsSX) |
|
expsSS = np.exp(-1/(2*sigma**2)*normsSS) |
|
SX, SS = np.zeros(d), np.zeros(d) |
|
for k in range(0,d): |
|
SX[k] = -1/(N*sigma**2) * np.sum((S[j] - X)[:,k] * expsSX) |
|
SS[k] = omega/(M*sigma**2) * np.sum((S[j] - S)[:,k] * expsSS) |
|
gradF[j] = SX + SS |
|
return gradF |
|
|
|
@multi_input |
|
def top_noise_reduction(X, n=100, omega=0.2, fraction=0.1, plot=False): |
|
""" |
|
Topological denoising algorithm as in arxiv:0910.5947 |
|
|
|
Parameters |
|
---------- |
|
X: dataframe(n_datapoints, n_features): |
|
Dataframe containing the data |
|
n: int, optional, default 100 |
|
Number of iterations |
|
omega: float, optional, default 0.2 |
|
Strength of the repulsive force between datapoints |
|
fraction: float between 0 and 1, optional, default 0.1 |
|
The fraction of datapoints from which the denoised dataset is |
|
constructed |
|
plot: bool, optional, default False |
|
When true plot the dataset and homology each iteration |
|
""" |
|
N = X.shape[0] |
|
S = X.iloc[np.random.choice(N, round(fraction*N), replace=False)] |
|
sigma = X.stack().std() |
|
c = 0.02*np.max(scipy.spatial.distance.cdist(X, X, metric='euclidean')) |
|
|
|
iterator = trange(0, n, position=0, leave=True) |
|
iterator.set_description("Topological noise reduction") |
|
for i in iterator: |
|
gradF = compute_gradient(S.to_numpy(), X.to_numpy(), sigma, omega) |
|
|
|
if i == 0: |
|
maxgradF = np.max(np.sqrt(np.square(gradF).sum(axis=1))) |
|
S = S + c* gradF/maxgradF |
|
|
|
if plot: |
|
fig = pyplot.figure() |
|
ax = Axes3D(fig) |
|
ax.scatter(X[0],X[1],X[2],alpha=0.1) |
|
ax.scatter(S[0],S[1],S[2]) |
|
pyplot.show() |
|
return S |
|
|
|
@njit(parallel=True) |
|
def density_estimation(X,k): |
|
"""Estimates density at each point""" |
|
N = X.shape[0] |
|
densities = np.zeros(N) |
|
for i in prange(N): |
|
distances = np.sum((X[i] - X)**2, axis=1) |
|
densities[i] = 1/np.sort(distances)[k] |
|
return densities |
|
|
|
@multi_input |
|
def density_filtration(X, k, fraction): |
|
""" |
|
Returns the points which are in locations with high density |
|
|
|
Parameters |
|
---------- |
|
X: dataframe(n_datapoints, n_features): |
|
Dataframe containing the data |
|
k: int |
|
Density is estimated as 1 over the distance to the k-th nearest point |
|
fraction: float between 0 and 1 |
|
The fraction of highedst density datapoints that are returned |
|
""" |
|
print("Applying density filtration...", end=" ") |
|
N = X.shape[0] |
|
X["densities"] = density_estimation(X.to_numpy().astype(np.float),k) |
|
X = X.nlargest(int(fraction * N), "densities") |
|
X = X.drop(columns="densities") |
|
print("done") |
|
return X |
|
|
|
@njit(parallel=True) |
|
def compute_averages(X, r): |
|
"""Used in neighborhood_average""" |
|
N = X.shape[0] |
|
averages = np.zeros(X.shape) |
|
for i in prange(N): |
|
distances = np.sum((X[i] - X)**2, axis=1) |
|
neighbors = X[distances < r] |
|
averages[i] = np.sum(neighbors, axis=0)/len(neighbors) |
|
return averages |
|
|
|
@multi_input |
|
def neighborhood_average(X, r): |
|
""" |
|
Replace each point by an average over its neighborhood |
|
|
|
Parameters |
|
---------- |
|
X: dataframe(n_datapoints, n_features): |
|
Dataframe containing the data |
|
r : float |
|
Points are averaged over all points within radius r |
|
""" |
|
print("Applying neighborhood average...", end=" ") |
|
averages = compute_averages(X.to_numpy().astype(np.float),r) |
|
print("done") |
|
result = pd.DataFrame(data=averages,index=X.index) |
|
return result |
|
|
|
@multi_input |
|
def z_cutoff(X, z_cutoff): |
|
""" |
|
Remove outliers with a high Z-score |
|
|
|
Parameters |
|
---------- |
|
X: dataframe(n_datapoints, n_features): |
|
Dataframe containing the data |
|
z_cutoff : float |
|
The Z-score at which points are removed |
|
""" |
|
z=np.abs(scipy.stats.zscore(np.sqrt(np.square(X).sum(axis=1)))) |
|
result = X[(z < z_cutoff)] |
|
print(f"{len(X) - len(result)} datapoints with Z-score above {z_cutoff}" |
|
+ "removed") |
|
return result |
|
|
|
@multi_input |
|
def PCA_reduction(X, dim): |
|
""" |
|
Use principle component analysis to reduce the data to a lower dimension |
|
|
|
Also print the variance explained by each component |
|
Parameters |
|
---------- |
|
X: dataframe(n_datapoints, n_features): |
|
Dataframe containing the data |
|
dim : int |
|
The number of dimensions the data is reduced to |
|
""" |
|
pca = PCA(n_components=dim) |
|
pca.fit(X) |
|
columns = [i for i in range(dim)] |
|
X = pd.DataFrame(pca.transform(X), columns=columns, index=X.index) |
|
print("PCA explained variance:") |
|
print(pca.explained_variance_ratio_) |
|
return X |